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Capturing types in Scala unify static effect and resource tracking with object capabilities, enabling lightweight

effect polymorphism with minimal notational overhead. However, their expressiveness has been insufficient

for tracking capabilities embedded in generic data structures, preventing them from scaling to the standard

collections library – an essential prerequisite for broader adoption. This limitation stems from the inability to

name capabilities within the system’s notion of box types.

This paper develops System Capless, a new foundation for capturing types that provides the theoretical

basis for reach capabilities (rcaps), a novel mechanism for naming “what’s in the box”. The calculus refines

the universal capability notion into a new scheme with existential and universal capture set quantification.

Intuitively, rcaps witness existentially quantified capture sets inside the boxes of generic types in a way that

does not require exposing existential capture types in the surface language. We have fully mechanized the

formal metatheory of System Capless in Lean, including proofs of type soundness and scope safety. System

Capless supports the same lightweight notation of capturing types plus rcaps, as certified by a type-preserving

translation, and also enables fully optional explicit capture-set quantification to increase expressiveness.

Finally, we present a full reimplementation of capture checking in Scala 3 based on System Capless and

migrate the entire Scala collections library and an asynchronous programming library to evaluate its practicality

and ergonomics. Our results demonstrate that reach capabilities enable the adoption of capture checking in

production code with minimal changes and minimal-to-zero notational overhead in a vast majority of cases.

1 Introduction
Statically tracking effects and resources through type systems has attracted increasing research

efforts in programming languages [26, 16, 11, 10, 48]. Despite this growing body of research,

integrating effect systems into mainstream programming languages remains challenging due to

concerns about usability and flexibility. Capturing Types (CT)
1
[6] is a promising advancement

that applies the object-capability model [34] to provide a simple, safe, and practical foundation for

effect tracking in Scala. Developing an effect system for such an established language brings both

opportunities and constraints: while the existing ecosystem facilitates adoption, legacy designs and

pre-existing code bases impose strict requirements for ergonomics and backward compatibility.

Bringing effect tracking to themasses. The key to making effect tracking practical and usable

in established languages is to describe effect polymorphism without sacrificing flexibility. Since

effects are transitive along call edges, every higher-order function needs to be effect-polymorphic

to account for effects performed by its arguments. In effect systems with explicit quantifiers, effect

parameters in signatures are required. For instance, the familiar map function would become the

following in a hypothetical effect system with explicit quantifiers:

class List[+T] { def map[U, E](f: T -> U eff E): List[U] eff E }

1
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While such verbosity is acceptable in principle, especially when designing a new language, it quickly

becomes disruptive in established languages like Scala where signature complexity grows rapidly.

CT addresses this challenge through lightweight effect signatures and implicit effect polymorphism,

a design goal shared by many recent works on other languages [26, 16, 11, 10, 48].

In CT’s approach, effects are performed and resources are accessed via capabilities, which are

program variables. CT’s essence is to track captured variables in types. It introduces capturing

types that augment regular types with a capture set over-approximating the variables a value may

capture, and thus giving a handle on the effects a value may perform. Consider a function that

greets someone using console I/O:

(name: String) => console.println("Hello␣" + name)

Assuming console is a capability for console I/O, this function has type String ->{console} Unit

(shorthand for (String -> Unit)^{console}). This capturing type consists of (1) the shape type spec-

ifying parameter and return types, and (2) the capture set {console} indicating the function may

capture console. The type makes it evident that the function may perform console I/O.

CT’s lightweight notation enables effect polymorphism that is minimally invasive. Returning to

our earlier example, the signature of map remains unchanged from vanilla Scala:

class List[+T] { def map[U](f: T => U): List[U] /* no signature changes needed */ }

The function arrow T => U is shorthand for (T -> U)^{cap}, where {cap} is the top capture subsum-

ing all capabilities. This allows argument f to capture arbitrary capabilities, making map effect-

polymorphic, analogous to modeling polymorphism through subtyping and Object in OO languages.

Retrofitting capturing types into Scala. Another key concern is harmoniously and non-

invasively integrating the new universe of capturing types (like String ->{console} Unit) into the

existing Scala type system. Previous work (System CC<:□ [6]) formally studied a pragmatic and

sound way of retrofitting this universe in a model 𝜆-calculus that informed Scala’s CT implemen-

tation. Consider a set of concurrent futures Set[Future[T]^], where the hat annotation Future[T]^

(shorthand for Future[T]^{cap}) indicates that futures are tracked as capabilities. Under the hood,

CC<:□ requires generic type arguments with captures to be boxed, i.e., this type desugars to

Set[box Future[T]^{cap}]. The appeal of boxing is that existing generic types like Set[T] do not need

to be polluted with extra quantifiers for captures, and work with normal Scala types as well as

capturing types, contributing to the lightweight nature of CT.

Generic types, elusive captures. However, attempts to apply CT to Scala’s collection library

revealed a key limitation of CC<:□ that makes using generic data structures impractical. Consider

a function that turns a set of futures into a stream arranging them by completion order:

def collect[T](fs: Set[Future[T]^]): Stream[Future[T]^] =

val channel = Channel()

fs.forEach(_.onComplete(v => channel.send(v))) // error, elements inaccessible!

Stream.of(channel)

This function is untypeable in CC<:□! To prevent unsafe capability leaks, the calculus forbids

accessing a boxed value when its capture set is the top element {cap} [6]. Hence, the futures in fs

are inaccessible and collect does not type-check (we detail boxes and {cap} in Section 2). CC<:□

lacks the ability to handle nested captures within generic types.

Furthermore, even if the type system tolerated capability leaks and allowed unboxing cap-qualified

types, the function would be impractical. The result type Stream[box Future[T]^{cap}] is imprecise:

it suggests futures in the stream may perform arbitrary effects, despite these futures originating

from the input fs and performing at most the effects of futures in that collection. CC<:□ cannot

express this precise input-output relationship. Is boxing doomed?
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The problem: What’s in the box? The fundamental problem is the lack of a mechanism for

safely accessing and referring to capabilities inside boxes. To see the core issue, we approach

the problem from the angle of explicit capture quantifications. The universal capture cap can be

understood as an existential capture. For instance, the type Future[T]^{cap}means a future capturing

some arbitrary capabilities; so it can be viewed as ∃𝑐.Future[T]^{𝑐}. Under this perspective, the collect
signature then becomes:

def collect[T](fs: Set[box ∃𝑐1 .Future[T]^{𝑐1}]): Stream[box ∃𝑐2 .Future[T]^{𝑐2}]
This reveals the disconnect between parameter and result captures. Since result futures originate

from input futures, a more precise and desirable signature would be:

def collect[T][∀𝑐1](fs: Set[box Future[T]^{𝑐1}]): Stream[box Future[T]^{𝑐1}]

Here, the witness 𝑐1 flows from input to output. Unfortunately, this signature is inexpressible in

CC<:□. The lesson to be learned here is that “no two caps are created equal”: we need more granular

means to distinguish between them.

As one solution, the CT system we propose supports optional explicit capture polymorphism:

def collect[T, C^](fs: Set[box Future[T]^{C}]): Stream[box Future[T]^{C}]

While this works with C^ declaring a capture parameter, relying on explicit polymorphism alone

would undermine CT’s lightweight design. From a language design perspective, we would like to

keep explicit polymorphism optional and offer ergonomic alternatives for such a common pattern.

Reach capabilities: Existentials without the clutter. We propose reach capabilities as an

effective and lightweight means to name existential captures in boxes. With reach capabilities, the

collect signature becomes:

def collect[T](@use fs: Set[Future[box T]^]): Stream[box Future[T]^{fs*}] // <- precise capture {fs*}

This signature tracks the futures in fs through: (1) the reach capability {fs*} that names what’s in

the box of fs’s type; and (2) the @use annotation signifies that the reach capability is used by collect

(see Section 2.2.3). No extra universal quantifiers or existential types are inflicted upon users.

A new foundation for capturing types. Previous attempts at supporting naming mechanisms

for box contents in Scala 3 [55] suffered from several soundness issues [44, 45, 24]. This experience,

along with our analysis of cap’s limitations, motivated us to develop a new theoretical foundation

for CT. We present two calculi: System Capless, a new foundational capture calculus with explicit

universal and existential capture quantification, and System Reacap, a surface calculus formalizing

CT’s lightweight syntax with reach capabilities. System Capless provides the new theoretical

bedrock for capture tracking, while System Reacap maintains CT’s lightweight design. A type-

preserving translation from Reacap to Capless assigns precise meaning to the surface syntax.

System Capless also informs our new quantifier-based capture checker implementation for Scala 3.

Scala collections, capture checked. The new and improved capture-checker implementation

based on System Capless finally enables integrating capturing types into Scala’s entire standard

collections library with minimal modifications (<5% LoC changed, almost 90% function signatures

stay the same). The kinds of modifications typically look as follows:

class Set[T]: // a mutable set

def filterInPlace(pred: T => Boolean): this.type // no changes

def prependAll(items: IterableOnce[T]^): this.type // extra universal capture set `^`
class Iterator[T]:

def map(f: T => Boolean): Iterator[T]^{this, f} // capture set {this, f} on return type

When the lightweight notation falls short, e.g., for mutable builders (Section 6), we support optional

explicit capture parameters. Notably, the collections library required none! Thus, our work is a

decisive step towards bringing practical effect systems to real-world programming languages.

Contributions. To summarize, our contributions are as follows:
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• Reach Capabilities: We propose and motivate reach capabilities (Section 2), which enable ex-

pressive and lightweight effect polymorphism over generic data structures. Furthermore, we

explain the subtleties of the previous system’s boxing mechanism and universal capability that

necessitate reach capabilities.

• System Capless: We present a new foundation for capturing types (System Capless, Section 3)

with existential and universal quantification of capture sets. Beyond providing the theoretical

basis of reach capabilities, it is a more principled and expressive formalization of capture checking

compared to the previous system CC<:□ [6].

• System Reacap: We present System Reacap (Section 4) which formalizes the surface language of

capture checking with rcaps, whose semantics is defined by a type-preserving translation to

System Capless.
• Mechanized Metatheory:We establish the type soundness and scope safety of our capture tracking

system (Section 5). The metatheory of System Capless is mechanized in Lean 4, while pencil-and-

paper proofs of the type-preserving translation from System Reacap to Capless are provided in

the supplementary material.

• Implementation and Evaluation: We applied the theory in a full re-implementation of Scala

3’s capture checker (Section 7) which was used to compile capture-checked versions of an

asynchronous programming library (Section 6), and Scala’s standard collections library. We

assess the required changes to the latter’s ~30K-line code base in Section 7. The required change

set is simple and small enough to make the transition to capture checking practical.

Finally, we discuss limitations and future directions in Section 8, related work in Section 9 and

conclude in Section 10.

2 A Tale of Names and Boxes
This section motivates reach capabilities and the two proposed calculi. All examples can be compiled

by our implementation which is part of the Scala 3 compiler.

2.1 A Brief Introduction to Capture Tracking
Bringing effect tracking to a well-established, mainstream language like Scala poses specific con-

straints. Scala’s broad adoption makes the ecosystem highly sensitive to notational overhead and

backward compatibility: systems that demand substantial syntactic changes or disrupt established

idioms are unlikely to be viable. Classical type-and-effect systems face a fundamental propagation

problem: effects flow along call chains, forcing each function to account for the effects of its callees.

To cope, such effect systems typically choose between manual specialization for fixed effect classes

(duplication) or pervasive effect annotations (syntactic burden). This combination of propagation

and notation has been a major barrier to deploying effect systems in Scala [6].

The capability-based approach circumvents this fundamental issue by modeling effects through

capabilities tracked in the type system. Rather than explicitly tracking effect propagation, capabilities

naturally flow through the program as ordinary program variables. However, capability systems

face the problem of captures [6], where closures can “leak” effects outside of their designated

lifetime by simply holding a reference to such capabilities. Capturing types (CT) [6, 5, 39] takes this

capability-oriented approach while proposing a lightweight mechanism to track captures, bringing

effective-yet-ergonomic effect tracking to Scala. A capturing type tracks the capabilities a value can

capture and takes the form of𝑇 ∧ {𝑥1, · · · , 𝑥𝑛}, consisting of two components: (1) the shape type𝑇 ,
a “classical” type describing the shape of the value (e.g. Int, a function from Int to Int, etc.), and (2)

the capture set {𝑥1, · · · , 𝑥𝑛}, a set of program variables a value of this type can at most capture.

Consider the function below which prints a greeting, using the capability console for console I/O:

def sayHi(name: String): Unit = console.log(s"Hi,␣$name!")
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sayHi has the capturing type (String -> Unit)^{console}. Since capabilities are represented as vari-

ables, the capture set indicates the effects and resources a value of this type can produce and access.

Here, the capture set of sayHi indicates that the function at most performs console I/O.

2.1.1 Lightweight Effect Polymorphism. CT supports implicit effect polymorphism. For higher-order

functions, classical effect systems have to use explicit effect binders to track effects like in the list

map example from Section 1. At its core, the issue with effect binders is about naming. When writing

a higher-order function, a name is needed to account for the effect produced by the argument.

Failing to do so leads to either a restrictive or an imprecise type. By contrast, in CT, the signature

of the list map method stays unchanged:

trait List[+A] { def map[B](f: A => B): List[B] }

It is effect-polymorphic yet stays identical to the original signature. Under the hood, A => B expands

to A ->{cap} B which itself is a shorthand for (A -> B)^{cap}. This type is a function from 𝐴 to 𝐵

capturing at most {cap} where cap is the universal capability.

2.1.2 Universal Capability as a Device for Effect Polymorphism. In CT, every capability is derived

from a set of existing ones, forming a hierarchy of authority. The universal capability cap is the

root of this capability hierarchy, and all other capabilities are ultimately derived from it, directly or

indirectly. E.g., the following Logger class writes logging messages to both a file and the console:

class Logger(f: File^) { def log(msg: String): Unit = { f.write(msg); console.log(msg) } }

val f: File^ = ...

val logger: Logger^{f,console} = Logger(f)

Here, File^ (short for File^{cap}) is a capability for file I/O. The logger variable is a Logger capability

for inducing logging effects having obtained access to the file and the console from existing

capabilities f and console, i.e., deriving from f and console. Furthermore, the sayHi function whose

type is String ->{console} Unit can be viewed as a capability derived from console.

CT introduces subcapturing, a subtyping relation between capture sets. It augments the set

inclusion relation by taking the capability hierarchy into account. A capability is a subcapture of

the set of capabilities it derives from. For instance, the following subcapturing relations hold for

the Logger example:

{} <: {logger} <: {f,console} {} <: {f} <: {cap}

Subtyping between capturing types is defined by the combination of regular subtyping between

shape types and subcapturing. Since all capabilities are ultimately derived from the universal

capability, any capture set is a subcapture of {cap}. Therefore, subcapturing and the universal

capability cap can be used as a device for effect polymorphism. Going back to List.map, the argument

type A => B indicates that map takes functions performing arbitrary effects: it is effect-polymorphic.

This is analogous to traditional subtype polymorphism:

def g(x: Any): Unit = ... // Any is the top type, g is type-polymorphic

In fact, the argument f of map itself is a capability, thus f becomes a name of its effects. We do not

need an extra name! For example, the following function takes an operation and returns an iterator

that repeatedly applies that operation:

def repeated[T](f: () => T): Iterator[T]^{f} = new Iterator[T]:

def next(): T = f()

def hasNext(): Boolean = true

The signature reads that, given any operation f, the function returns an iterator with f’s effects.
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2.1.3 What’s in the Box? Another challenge in supporting capture tracking in Scala is the interac-

tion between capturing types and generics, which is a fundamental part of functional programming.

Consider the following generic function that transforms the first element of a pair:

def mapFirst[A, B, C](p: Pair[A, B], f: A => C): Pair[C, B] = Pair(f(p.x), p.y)

What should be the signature of this function under CT?Without any restrictions, the type variables

A, B, and C could be instantiated to capturing types. This means that the pair p could capture arbitrary

capabilities through its fields. Consequently, the parameter p needs to be annotated with {cap}:

def mapFirst[A, B, C](p: Pair[A, B]^{cap}, f: A => C): Pair[C, B]^{cap} = ...

The resulting Pair also needs to be annotated with {cap} because there is no account of what C

captures: it can be anything. This is an unacceptably imprecise signature.

The solution in CT is to keep generic types pure and introduce boxes to recover expressiveness.

This simplifies generic functions, as they do not need to account for potential effects from their type

arguments. With this restriction, the mapFirst function works without any capture annotations:

def mapFirst[A, B, C](p: Pair[A, B], f: A => C): Pair[C, B] = ...

Intuitively, parametricity ensures that mapFirst cannot inspect the contents of the pair, so the

captures of the generic field types should be irrelevant to this function.

To handle capturing types in generic contexts, CT introduces boxes, which encapsulate impure

values as pure ones. To access a boxed value, it needs to be unboxed, which “pops out” the captures

that were previously hidden. For example:

val consoleOps: List[box () ->{console} Int]^{} = List(box () => console.readInt())

val f: () ->{} Boolean = () => consoleOps.isEmpty

val g: () ->{console} Int = () => (unbox consoleOps.head)()

Even though elements of consoleOps are effectful, they are all boxed and the list consoleOps is pure.

The function f is pure since it does not access the elements of consoleOps. Conversely, g does access

the elements of consoleOps and unboxes its element, which pops out the captured capabilities hidden

by the box. As a result, g captures the previously hidden capability console.

As a rule of thumb, whenever we see a capturing type in type-argument position, there is

implicitly a box. For instance, the type List[() => Int] expands automatically to List[box () => Int].

We will nevertheless show boxes in examples for pedagogical reasons. In fact, the Scala 3 compiler

implements complete box inference, so boxes are transparent to users [56] and the language does

not even have a surface syntax for them. Besides, unlike the “boxing” in the JVM, boxes in CT are

purely a compile-time construct with no runtime overhead.

Now we can see how the mapFirst function works with boxed impure values. Consider a pair

containing a file capability and an operation:

val p: Pair[box File^{f}, box () ->{f} Unit] = ...

val q = mapFirst(p, f => box (new Logger(unbox f))) // : Pair[box Logger^{f}, box () ->{f} Unit]

val useLogger = () => (unbox q.fst).log("test") // : () ->{f} Unit

The generic function mapFirst operates on this pair with all the impure values boxed. The transfor-

mation function creates a new Logger by unboxing the file, and the result is re-boxed to maintain

purity. When the logger is finally used, unboxing it reveals the capability f in the capture set. This

demonstrates the idea of capture tunnelling [6]: captures are tunneled through generic contexts via

boxes and only surface when the boxed values are accessed. This reflects the relational parametricity

[51] of generic functions, and allows CT to stay concise and practical [6].

Furthermore, boxes play a crucial role in ensuring the scope safety of capabilities: a boxed value

capturing cap (e.g. box File^{cap} where ^ binds tighter than the box) cannot be unboxed, as it

typically represents a capability that has escaped from its defining scope [6]. The following example

tries to leak a File out of its defining local scope:
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def withFile[T](f: File^ => T): T = { val l: File^ = new File; val r = f(l); l.close(); r }

val leakedBox: box File^{cap} = withFile[box File^{cap}](file => box file)

val leakedFile = unbox leakedBox // error: unboxing value capturing {cap}

Note the type parameter to withFile has to be instantiated with box File^{cap}, as the local parameter

file is out of scope. Consequently, the unbox operation fails due to the above restriction.

Despite these properties, boxes introduce a fundamental limitation: they cut the tie between the

name of a generic data structure and the effects of its elements, making them untrackable. For

instance, given ops: List[() => Int], we cannot use ops to name the effects of the list elements:

def mkIterator[T](ops: List[() => T]): Iterator[T]^{cap} = ...

Here, mkIterator creates an iterator from a list of closures, running them one by one. This function

cannot be expressed in the previous CT system [6] due to the scope safety restriction mentioned

above. Furthermore, even if we had sacrificed scope safety and lifted the restriction, we are only able

to type the result at Iterator[T]^{cap} since we have no means to name the effects of the elements

in ops. This is again utterly imprecise: even if only pure operations are passed in, the result is

considered performing arbitrary effects. The following definition of pure has a pure RHS, but will

fail to type-check:

val pure: () ->{} Int = () => mkIterator(List(() => 1)).next() // error: using value capturing {cap}

The root cause lies in the mkIterator example itself. The argument ops (of type List[box () => T]^{})

is pure: {ops} <: {}, since list elements are boxed. Therefore, the list’s capture set becomes completely

disconnected from the capture sets of its elements. Hence, we cannot name what is in the box

of a generic data structure! This inability to characterize the contents of boxes is precisely the

underlying problem that this paper addresses.

2.2 Naming What’s in the Box
The problem of naming capabilities inside boxes can be solved by extending the type system with

explicit quantification over capture sets. This is supported by our new foundational calculus, System

Capless, which provides a sound and principled basis for explicit capture quantifications. We can

give a precise type to our mkIterator example:

def mkIteratorExplicit[T, c^](ops: List[() ->{c} T]): Iterator[T]^{c} = ...

Here, [..., c^] introduces a universal capture set variable c. The signature now precisely states

that for any capture set c, if mkIterator is given a list of operations that all at most capture c, it

returns an iterator that also captures c.

mkIteratorExplicit[Int, {}](List(() => 1, () => 2)) // : Iterator[Int]^{}

mkIteratorExplicit[Int, {console}](consoleOps) // : Iterator[Int]^{console}

When called with pure operations, c can be instantiated to the empty set {}, and the resulting

iterator is pure. When called with consoleOps of type List[() ->{console} Int], c is instantiated to

{console}, and the result captures {console}.

While expressive, this explicit style can be verbose: every function that maps generic collections

of capabilities has to be annotated with explicit capture variables. This deviates from the lightweight

philosophy that makes CT appealing for established languages like Scala. We therefore propose to

keep explicit quantification as an optional feature, and introduce reach capabilities, an ergonomic

and lightweight mechanism for naming “what is in the box”. Reach capabilities allow us to write

the mkIterator signature as follows, with minimal disruption to the original code:

def mkIterator[T](@use ops: List[() => T]): Iterator[T]^{ops*} = ...

Reach capabilities can be understood by translating them to explicit capture variables. For instance,

the reach capability ops* directly corresponds to the variable c in the explicit version. It serves as
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a name for the capabilities that can be reached through the boxes of ops. Similar to the explicit

version, the following is well-typed:

mkIterator(List(() => 1, () => 2)) // : Iterator[Int]^{}

mkIterator(consoleOps) // : Iterator[Int]^{console}

Reach capabilities are realized through three core mechanisms: reach refinement (Section 2.2.1),

deep capture sets (Section 2.2.2), and the @use annotation (Section 2.2.3).

2.2.1 Reach Refinement. To introduce reach capabilities, the type-checker performs reach re-

finement. When a variable ops is used, this process replaces certain occurrences of the universal

capability cap in its type with the reach capability ops*. This essentially gives a name to the capabili-

ties inside the boxes, which is analogous to how a variable names the capabilities it directly captures.

For instance, given ops: List[() ->{cap} T], reach refinement infers its type as List[() ->{ops*} T].

Let’s inspect the mkIterator function as an example:

def mkIterator[T](@use ops: List[box () => T]): Iterator[T]^{ops*} = new Iterator[T]:

var current: List[box () ->{ops*} T] = ops

def next(): T =

val f: () ->{ops*} T = unbox (current.head : box () ->{ops*} Unit)

current = current.tail

f()

def hasNext(): Boolean = current.nonEmpty

This type-checks thanks to reach refinement:

• In the definition of current, ops is accepted because its type is refined from List[box () ->{cap} Int]

to List[box () ->{ops*} Int].

• On the RHS of the variable definition f, current.head has type box () ->{ops*} Int.

• The unboxing then propagates the reach capability ops* to the capture set of the iterator’s closure.

• The resulting iterator correctly captures ops*.

From an explicit-quantification perspective, the parameter ops has the type ∃𝑐. List[box () ->{𝑐} T],

and ops* corresponds directly to the witness of 𝑐 .

Understanding reach capabilities in terms of a translation to quantification is essential for a sound

design. An earlier, ad-hoc implementation of reach capabilities suffered from soundness issues

precisely because it lacked this foundation [44, 45, 24]. The central question is: which occurrences

of the universal capability cap in a type should be refined to a reach capability? The initial, intuitive

answer was “all covariantly-occurring caps”. This is unsound, accepting the following code:

val map: [T] -> (files: List[box File^]) -> (op: (box File^) => T) -> List[T] =

files.map(op) // a function that maps a list of files

val makeFilePure: File^ -> File^{map*} = (f: File^) => map[box File^{map*}](List(f))(x => x).head

The makeFilePure function is problematic: it converts an arbitrary File^ capability (which can perform

file I/O) to one that only captures map*. Since map is a pure function, map* is empty, meaning the

resulting File is considered pure, despite being the same impure File that was given!

The problem lies within map’s reach refinement:

[T] -> (files: List[box File^{cap}]) -> (op: (f: box File^{map*}) => T) -> T

It becomes clear that this is absurd when we translate the type of map into explicit quantification:
2

[T] -> (files: ∃𝑐1 . List[box File^{𝑐1}]) -> (op: (f: ∃𝑐2 . box File^{𝑐2}) => T) -> T

map*witnesses the existential scoped at the outermost level of map (in this case, there is no existential

bound at this level), and clearly does not witness 𝑐2. The unsound reach refinement principle

implicitly assumes map’s type translates to:

2
For clarity, we show existential quantifiers on parameters, which are trivially convertible into universal quantifiers.
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∃𝑐2 . [T] -> (files: ∃𝑐1 . List[box File^{𝑐1}]) -> (op: (f: box File^{𝑐2}) => T) -> T

It confuses the scope of the existential variable 𝑐2. Our principled approach avoids such confusion

by ensuring that each cap is mapped to an existential in the closest enclosing scope, and reach

capabilities always witness the outermost existential.

2.2.2 Deep Capture Sets. At function call sites, reach capabilities of parameters are instantiated

with the deep capture sets of the corresponding argument types. The deep capture set of a type

collects all capabilities that occur covariantly in that type. It provides a concrete witness for the

existential quantification that reach capabilities represent.

Let us revisit our mkIterator example with its explicit quantification version:

def mkIteratorExplicit[T, c^](ops: List[() ->{c} T]): Iterator[T]^{c} = ...

When calling mkIteratorExplicit[Int, {console}](consoleOps), the capture variable c is explicitly in-

stantiated to {console}. Deep capture sets achieve the same for reach capabilities: when calling

mkIterator(consoleOps), the reach capability ops* (which witnesses the explicit variable c) is instanti-

ated with the deep capture set of List[() ->{console} Int], which yields {console}, correctly typing

the result as Iterator[Int]^{console}. Deep capture sets collect only covariantly-occurring capture

sets because these represent capabilities that can flow “outward” – the capabilities “in the box” that

can be accessed when using a value. Contravariant positions, by contrast, represent capabilities

flowing “inward” – requirements for using the value rather than capabilities it captures.

2.2.3 The @use Annotation. The @use annotation on a function parameter signifies that the parame-

ter’s reach capability is used by the function. This annotation is needed to ensure that function

applications are tracked correctly. Normally, the capabilities captured by an application f(x) are

simply {f,x}. However, this is unsound for functions that use their parameters’ reach capabilities:

def runOps(@use ops: List[() => Unit]): Unit = ops.foreach(op => op()) // run each op in list

val ops: List[() ->{console} Unit] = List(() => console.log("Hello"))

val r2 = () => runOps(ops)

Without a special rule for @use parameters, the body of r2would only capture {runOps, ops}, which is

pure. As a result, r2 would be incorrectly typed as () ->{} Unit, even though it performs console I/O.

The @use annotation signals that the call site must account for the capabilities inside the argument.

The general rule is that for @use parameters, the call captures the deep capture set of the argument,

whereas for normal parameters only its (shallow) capture set is used. For runOps(ops), the captured

set is the union of {runOps} and the deep capture set of ops’s type, which is {console}. This correctly

gives r2 the type () ->{console} Unit.

2.2.4 Type Definitions. Sometimes, the default behavior of introducing existential quantifiers in

the closest enclosing scope is not desirable. To address this, System Reacap includes type definitions,

which are essentially parameterized aliases for types. For instance, the following type definition

defines non-dependent functions, i.e., those that do not depend on their parameters:

type Function[-A, +B] = (z: A) -> B

Instances of cap in a type definition’s type parameters are translated into existential quantifiers

before the type definition is expanded. Consider the flatMap function for Iterator, from the Scala

collections library:

def flatMap[A, B](it: Iterator[A]^, f: A => Iterator[B]^): Iterator[B]^{?} // <- what's the result?

With the default translation scheme, the resulting iterator’s capture set is the overly imprecise {cap}.

This is because type parameter f’s type translates to A => ∃𝑐. Iterator[B]^{c}. Each application of

f yields an iterator that captures a locally-quantified existential 𝑐 . A more desirable translation

would be ∃𝑐. A => Iterator[C]^{c}, with the existential 𝑐 being scoped over the whole function, and
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𝑥, 𝑦, 𝑧 Variable

𝑋 Type Variable

𝑐 Capture Variable
𝑠, 𝑡, 𝑢 := Term

𝑎 answer

𝑥 𝑦 app.

𝑥 [𝑆 ] type app.

𝑥 [𝑐 ] capture app.

let 𝑥 = 𝑡 in 𝑢 let

let ⟨𝑐, 𝑥 ⟩ = 𝑡 in 𝑢
existential let

𝑣 := Value

𝜆 (𝑥 : 𝑇 )𝑡 term lambda

𝜆[𝑋 <: 𝑆 ]𝑡 type lambda

𝜆[𝑐 <: 𝐵 ]𝑡 capt. lambda

⟨𝐶, 𝑥 ⟩ pack

𝐸, 𝐹 := Existential Type

∃𝑐.𝑇 existential

𝑇 type

𝑅, 𝑆 := Shape Type
⊤ top

𝑋 type variable

∀(𝑥 : 𝑇 )𝐸 term function

∀[𝑋 <: 𝑆 ]𝐸 type function

∀[𝑐 <: 𝐵 ]𝐸 capt. function

𝑎 := 𝑥 | 𝑣 Answer

𝜃 := 𝑥 | 𝑐 Capture

𝐶, 𝐷 := {𝜃1, · · · , 𝜃𝑛 } Capture Set

𝐵 := ∗ | 𝐶 Capture Bound
𝑇, 𝑈 := Type

𝑆 ∧𝐶 capturing

𝑆 pure

Γ, Δ := Context
∅ empty

Γ, 𝑥 : 𝑇 term binding

Γ, 𝑋 <: 𝑆 type binding

Γ, 𝑐 <: 𝐵 capt. binding

Fig. 1. Abstract syntax of System Capless. Key differences from System CC<:□ are highlighted .

the reach capability f* would be the capture set of the result iterator. By treating non-dependent

function types T => U as applied type definitions Function[T, U]^, we can type-check the following

signature with a precise result capture set:

def flatMap[A, B](it: Iterator[A]^, f: A => Iterator[B]^): Iterator[B]^{it, f, f*}

This is exactly how the implementation works. The applied type Function[A, Iterator[B]^] translates

and dealiases as follows:

Function[A, Iterator[B]^{cap}] { ∃𝑐. Function[A, Iterator[B]^{c}] { ∃𝑐. (z: A) -> Iterator[B]^{c}

Type definitions play a crucial role in our system by offering away to change the scope of existentials,

as needed by, e.g., church-encoded data structures. We further discuss them in Section 4.2.4.

While explicit quantification over capabilities provides a more powerful and general solution

to capability polymorphism, this generality often comes at the cost of verbosity and boilerplate.

Reach capabilities, in contrast, offer a lightweight and ergonomic alternative that is sufficient for

the vast majority of common programming patterns. For instance, our standard library is fully

capture-checked using only reach capabilities, with no need for explicit quantification. We provide

an example demonstrating how reach capabilities enables storing capabilities in local mutable

states in Appendix B.1. The usefulness of reach capabilities is further demonstrated in the case

study on asynchronous programming (Section 6).

3 System Capless: A New Foundation for Expressive Capture Tracking
System Capless (Figures 1 and 2) is a new foundation of capturing types. It models the essence of

our new capture checker implementation in Scala 3 (Section 7). Formally, it is a version of System

CC<:□ [6], the main difference being (1) the removal of the universal capability cap, and (2) having

explicit capture quantifications.

3.1 Syntax
The syntax of System Capless is shown in Figure 1, highlighting key differences to CC<:□ [6]. Just

like CC<:□, we represent programs in monadic normalform (MNF) [22]. This has the advantage that

substitutions in dependent applications are always variable renamings and preserve the structure
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Typing 𝐶 ; Γ ⊢ 𝑡 : 𝐸
𝑥 : 𝑆 ∧𝐶 ∈ Γ

{𝑥 }; Γ ⊢ 𝑥 : 𝑆 ∧ {𝑥 }
(var)

𝐶 ′
; Γ ⊢ 𝑥 : [𝑐 :=𝐶 ]𝑇

{}; Γ ⊢ ⟨𝐶, 𝑥 ⟩ : ∃𝑐.𝑇
(pack)

𝐶 ; Γ ⊢ 𝑡 : 𝐸 Γ ⊢ 𝐸 <: 𝐹

Γ ⊢ 𝐶 <: 𝐶′ Γ ⊢ 𝐶′, 𝐹 wf

𝐶 ′
; Γ ⊢ 𝑡 : 𝐹

(sub)

𝐶 ; (Γ, 𝑥 : 𝑇 ) ⊢ 𝑡 : 𝐸 Γ ⊢ 𝑇 wf

{}; Γ ⊢ 𝜆 (𝑥 : 𝑇 )𝑡 : (∀ (𝑥 : 𝑇 )𝐸 ) ∧ (𝐶 \ 𝑥 )
(abs)

𝐶 ′
; Γ ⊢ 𝑥 : (∀ (𝑧 : 𝑇 )𝐸 ) ∧𝐶

𝐶 ′
; Γ ⊢ 𝑦 : 𝑇

𝐶 ′
; Γ ⊢ 𝑥 𝑦 : [𝑧 := 𝑦 ]𝐸

(app)

𝐶 ; (Γ, 𝑋 <: 𝑆 ) ⊢ 𝑡 : 𝐸 Γ ⊢ 𝑆 wf

{}; Γ ⊢ 𝜆[𝑋 <: 𝑆 ]𝑡 : (∀[𝑋 <: 𝑆 ]𝐸 ) ∧𝐶

(tabs)

𝐶 ′
; Γ ⊢ 𝑥 : (∀[𝑋 <: 𝑆 ]𝐸 ) ∧𝐶

𝐶 ′
; Γ ⊢ 𝑥 [𝑆 ] : [𝑋 := 𝑆 ]𝐸

(tapp)

𝐶 ; (Γ, 𝑐 <: 𝐵) ⊢ 𝑡 : 𝐸 Γ ⊢ 𝐶 wf

{}; Γ ⊢ 𝜆[𝑐 <: 𝐵 ]𝑡 : (∀[𝑐 <: 𝐵 ]𝐸 ) ∧𝐶

(cabs)

𝐶 ′
; Γ ⊢ 𝑥 : (∀[𝑐 <: 𝐷 ]𝐸 ) ∧𝐶

𝐶 ′
; Γ ⊢ 𝑥 [𝐷 ] : [𝑐 := 𝐷 ]𝐸

(capp)

𝐶 ; Γ ⊢ 𝑡 : 𝑇 𝐶 ; (Γ, 𝑥 : 𝑇 ) ⊢ 𝑢 : 𝐸

Γ ⊢ 𝐶, 𝐸 wf

𝐶 ; Γ ⊢ let 𝑥 = 𝑡 in 𝑢 : 𝐸

(let)

𝐶 ; Γ ⊢ 𝑡 : ∃𝑐.𝑇
𝐶 ; (Γ, 𝑐 <: ∗, 𝑥 : 𝑇 ) ⊢ 𝑢 : 𝐹

Γ ⊢ 𝐶, 𝐹 wf

𝐶 ; Γ ⊢ let ⟨𝑐, 𝑥 ⟩ = 𝑡 in 𝑢 : 𝐹
(let-e)

Subcapturing Γ ⊢ 𝐶1 <: 𝐶2

Γ ⊢ 𝐶1 <: 𝐶2

Γ ⊢ 𝐶2 <: 𝐶3

Γ ⊢ 𝐶1 <: 𝐶3

(sc-trans)

𝑥 : 𝑆 ∧𝐶 ∈ Γ

Γ ⊢ {𝑥 } <: 𝐶

(sc-var)

𝑐 <: 𝐶 ∈ Γ

Γ ⊢ {𝑐 } <: 𝐶

(sc-bound)

𝐶1 ⊆ 𝐶2

Γ ⊢ 𝐶1 <: 𝐶2

(sc-elem)

Γ ⊢ 𝐶1 <: 𝐶

Γ ⊢ 𝐶2 <: 𝐶

Γ ⊢ 𝐶1 ∪𝐶2 <: 𝐶

(sc-set)

Bound Subtyping Γ ⊢ 𝐵1 <: 𝐵2 same as subcapturing plus Γ ⊢ 𝐵 <: ∗
Subtyping Γ ⊢ 𝐸1 <: 𝐸2

Γ ⊢ 𝑆 <: ⊤ (top)

Γ ⊢ 𝐸 <: 𝐸 (refl)

Γ ⊢ 𝐸1 <: 𝐸2

Γ ⊢ 𝐸2 <: 𝐸3

Γ ⊢ 𝐸1 <: 𝐸3

(trans)

𝑋 <: 𝑆 ∈ Γ

Γ ⊢ 𝑋 <: 𝑆
(tvar)

Γ ⊢ 𝑆1 <: 𝑆2
Γ ⊢ 𝐶1 <: 𝐶2

Γ ⊢ 𝑆1 ∧𝐶1 <: 𝑆2
∧𝐶2

(capt)

(Γ, 𝑐 <: ∗) ⊢ 𝑇1 <: 𝑇2
Γ ⊢ ∃𝑐.𝑇1 <: ∃𝑐.𝑇2

(exist)

(Γ, 𝑥 : 𝑇2 ) ⊢ 𝐸1 <: 𝐸2 Γ ⊢ 𝑇2 <: 𝑇1
Γ ⊢ ∀(𝑥 : 𝑇1 )𝐸1 <: ∀(𝑥 : 𝑇2 )𝐸2

(fun)

(Γ, 𝑋 <: 𝑆2 ) ⊢ 𝐸1 <: 𝐸2 Γ ⊢ 𝑆2 <: 𝑆1
Γ ⊢ ∀[𝑋 <: 𝑆1 ]𝐸1 <: ∀[𝑋 <: 𝑆2 ]𝐸2

(tfun)

(Γ, 𝑐 <: 𝐵2 ) ⊢ 𝐸1 <: 𝐸2

Γ ⊢ 𝐵2 <: 𝐵1

Γ ⊢ ∀[𝑐 <: 𝐵1 ]𝐸1 <: ∀[𝑐 <: 𝐵2 ]𝐸2

(cfun)

Fig. 2. Typing rules of System Capless.

of types. The main difference stems from dropping the top capture set cap in favor of explicit

bounded universal and existential capture quantification, which behave similarly to the respective

quantifiers in System F≤ for types. Accordingly, capture sets 𝐶 can now also mention capture

variables 𝑐 next to term variables 𝑥 .

Capture quantification is bounded by a capture bound 𝐵 which can be either a concrete capture

set upper bound or unbounded (denoted by ∗), though note that there is no “top” capture set any

longer. When the bound 𝐵 is omitted, it defaults to ∗.
Existential capture quantification is unbounded and second class, i.e., confined to the top level

in the type system and function result types. The typing judgment assigns types from the syntax

category 𝐸 to terms (cf. below). The argument types of term functions only range over the syntax

category 𝑇 . This restriction is a deliberate design choice aimed at the minimality of the system. It

does not compromise expressiveness, as functions that would otherwise take existential types as

arguments can always be equivalently expressed using universal capture quantification followed
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by ordinary term functions. Concretely, the type ∀(𝑧 : ∃𝑐.𝑇 )𝐸 is equivalently represented as

∀[𝑐]∀(𝑧 : 𝑇 )𝐸.

3.2 Type System
The typing judgment 𝐶 ; Γ ⊢ 𝑡 : 𝐸 in Figure 2 states that term 𝑡 has existential type 𝐸 under context

Γ with use set 𝐶 . Intuitively, the use set 𝐶 are the set of capabilities that will at most be used by

the evaluation of term 𝑡 . The use set of all values is empty, as they are already evaluated. Tracking

use sets in the judgment improves over the previous System CC<:□ [6] in two important ways: (1)

capture tracking for curried functions behaves more precisely akin to effect systems, i.e., captures

of subsequent function arrows do not accumulate on the current one, and (2) a more streamlined

handling of let bindings. We explain them in detail when discussing corresponding typing rules.

Typing rules (Figure 2) are for the most part identical to System CC<:□ with the main difference

that typing now potentially assigns an existential capture set type 𝐸 and that there are changes and

additions due to the reformulation with use sets and the introduction of universal and existential

capture quantifications.

To type a variable 𝑥 in context (var), it has to be included in the use set. Just like in CC<:□, the

capture set is refined to exactly {𝑥} in the assigned type and the capture set 𝐶 in the environment

can be recovered via subcapturing. The subtyping rule (sub) allows us to refine both the use set

and the type.

Bounded type abstraction (tabs) and type application (tapp) is mostly standard, and follows

System F≤ , again remarking that values are pure and have an empty use set. Following CC<:□

[6], type application takes pure types without capture qualifiers. The rules for universal (cabs),

(capp) and existential capture quantification (pack), (let-e) are in the spirit of System F≤ and hence

unsurprising.

Introducing and eliminating a 𝜆-abstraction in (abs) and (app) is for the most part standard.

In terms of captures, a 𝜆 is pure, i.e., having an empty use set, and the use set of the body 𝑡 is

annotated to the function type. Thanks to the tracking of use sets in the typing judgment, the

capture tracking of curried functions is more precise compared to [6]. For instance, consider the

term 𝜆(𝑥1 : Unit). let 𝑧0 = logger.log(· · · ) in 𝜆(𝑥2 : Unit). console.readInt(). This term has type

(∀(𝑥1 : Unit) (∀(𝑥2 : Unit)Int) ∧ {console}) ∧ {logger}, while in the previous system [6] it would

have been (∀(𝑥1 : Unit) (∀(𝑥2 : Unit)Int) ∧ {console}) ∧ {console, logger}. Our system has a better

account of when the captured capabilities are used.

3.2.1 Subtyping and Subcapturing. Subcapturing and subtyping rules (Figure 2) follow System

CC<:□. The former is a preorder on capture sets that subsumes set inclusion, plus the more inter-

esting rule (sc-var) which “reflects an essential property of object capabilities” [6], namely that the

singleton capture set {𝑥} refines/derives from the capabilities 𝐶 from which 𝑥 was created.

For the most part, subtyping integrates subcapturing with the standard subtyping rules for kernel

System F≤ in an unsurprising way. In addition to those of System CC<:□, the rules (exist) and

(cfun) are for the new quantification forms.

3.2.2 Let bindings and avoidance. Let bindings (let) are typed in a standard manner. Due to

dependent typing, we need to avoid mentions of the bound variable in the result type, which we

enforce by subtyping. Well-formedness of capture sets Γ ⊢ 𝐶 wf and its lifting to types Γ ⊢ 𝐸 wf
(defined in Section A.1) enforce that all mentioned variables are in scope. Note that the locally

bound variable 𝑥 is not dropped from the use set 𝐶 . Instead, it needs to be avoided in the use

set, which is done by subcapturing. This along with the more precise capture tracking of curried

functions makes it possible to reason about when the captured capabilities are used. For instance,

assuming 𝑥 𝑓 : (∀(𝑥 : Unit) (∀(𝑦 : Unit)Int) ∧ {console}) ∧ {logger} and unit a constant of type Unit,
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𝑥, 𝑦, 𝑧, cap Variable

𝑋, 𝑌, 𝑍 Type Variable

𝜅 Typedef Name
𝑠, 𝑡, 𝑢 := Term

𝑎 answer

𝑥 𝑦 application

𝑥 [𝑆 ] type application

𝑥 [𝐶 ] capt. application

let 𝑥 = 𝑡 in 𝑢 let

𝐶 � 𝑥 unbox

𝑣 := Value

𝜆𝛼 (𝑥 : 𝑇 )𝑡 function

𝜆[𝑋 <: ⊤]𝑡
type function

𝜆[𝑐 ]𝑡 capture function

□𝑥 box

𝐶, 𝐷 := {𝜃1, · · · , 𝜃𝑛 } Capture Set

𝑅, 𝑆 := Shape Type
⊤ top

𝑋 type variable

∀𝛼 (𝑥 : 𝑇 )𝑈 function

∀[𝑋 <: ⊤]𝑇 type function

∀[𝑐 ]𝑇 capture function

□𝑇 boxed

𝜅 [𝑇1, · · · ,𝑇𝑛 ] applied type

𝛼 := Use Annotation
𝜖 empty

• use

𝑑 := (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ↦→ 𝑆

Type Definition

𝜃 := Capture
𝑥 variable

𝑥∗
reach

𝑎 := 𝑥 | 𝑣 Answer

𝜈 := + | − Variance
𝑇, 𝑈 := Type

𝑆 ∧𝐶 capturing

𝑆 pure

Γ, Δ := Context
∅ empty

Γ, 𝑥 : 𝑇 term binding

Γ, 𝑋 <: ⊤ type binding

Γ, 𝑐 capture binding

Θ := Typedef Context
∅ empty

Θ, 𝜅 = 𝑑 typedef

Fig. 3. Abstract syntax of System Reacap.

the term let 𝑧 = 𝑥 𝑓 unit in 𝑧 unit has the use set {console, logger}. This is because 𝑧, whose type is
(∀(𝑦 : Unit)Int) ∧ {console}, is mentioned in the body of the let binding. To avoid the locally-bound

𝑧 in the use set of the let binding, we must widen the mention of 𝑧 to {console} with subcapturing.

Conversely, the following term, which only applies 𝑥 𝑓 once and discards the result, will only have

the use set {logger}: let 𝑧 = 𝑥 𝑓 unit in unit. To compare, in the previous system [6], both terms will

have to capture {console, logger} although the latter did not use the console capability. Besides,
the premises and the conclusion share the same use set 𝐶 , which is more uniform and streamlined.

One can always find a use set that accounts for all the capabilities used by the premises and use

(sub) to make this rule applicable.

Beyond providing a theoretical basis for reach capabilities, System Capless itself is a more prin-

cipled and expressive foundation for capture tracking that offers additional theoretical advantages,

which are further discussed in Section B.2. The evaluation rules are almost identical to System

CC<:□, and we elide them for brevity. See Appendix A.2 for the full details.

4 System Reacap: A Surface-Language Calculus for Reach Capabilities
System Reacap is a core calculus that models the surface language of capture checking with caps

and reach capabilities. It is built on the previous System CC<:□ by Boruch-Gruszecki et al. [6].

We support the same lightweight end-user notation in types and extend it with @use parameters

and reach capabilities x* motivated in Section 2. The semantics of Reacap is defined in terms of a

type-preserving translation to System Capless with explicit capture quantifiers (Sections 3 and 5).

4.1 Syntax
Figure 3 shows the syntax of SystemReacap. The syntax is close to that of SystemCC<:□ [6], basically

System F≤ with captures and boxing. The main difference is the addition of reach capabilities 𝑥∗, the
use-annotation 𝛼 , and applied types 𝜅 [𝑇1, · · · ,𝑇𝑛]. Following System Capless and CC<:□, terms are

in monadic normal form (MNF) [22], i.e., arguments to operations are always let-bound variables.
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In the formal syntax, the presence/absence of @use annotations on parameters is encoded by

annotations 𝛼 attached to the function type, e.g., (@use x: box (File^C)) ->{D} Int becomes (∀• (𝑥 :

□ (File∧𝐶))Int) ∧𝐷 .
Type abstractions take pure type arguments, i.e., type parameters are not qualified with captures

and qualified type arguments must be put into boxes. Boxing plays a crucial role in enforcing the

scope-safety of capabilities [6]. Type parameters are also unbounded (i.e., always being bounded by

⊤). This choice arises from the translation of System Reacap into Capless (cf. Section 4.3).

An applied type 𝜅 [𝑇1, · · · ,𝑇𝑛] applies a type definition 𝜅 to the type arguments. A global type

definition context Θ that contains a list of type definitions is assumed. In other words, System

Reacap is parameterized by a type definition context Θ. A type definition 𝜅 = (𝑋 𝜈1
1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ↦→
𝑆 acts like a type macro that, given a list of type arguments 𝑇1, · · · ,𝑇𝑛 , expands into the type

[𝑋1 := 𝑇1, · · · , 𝑋𝑛 := 𝑇𝑛]𝑆 . 𝜈𝑖 is the variance of the 𝑖-th type argument, which can be either +
(covariant) or − (contravariant). Type definitions enable control over reach-capability expansion

(cf. Section 2.2.4) and patterns like church-encoded data types in System Reacap. Their interaction
with reach refinement will be discussed in Section 4.2.4.

4.2 Type System
The typing judgement 𝐶; Γ ⊢ 𝑡 : 𝑇 in Figure 4 is formulated with use sets like in System Capless
(Section 3). Rule (var) mostly matches the one in System Capless. What is new here is the additional

reach refinement (cf. Section 2.2) of the variable’s assumed type 𝑆 to 𝑆 ′, which basically replaces

certain occurrences of cap in 𝑆 with the reach capability 𝑥∗. We explain the details of reach

refinement later in Section 4.2.3.

Rules governing box introduction (box) and box elimination (unbox) follow CC<:□. Boxes are

considered to be pure values, thus they have an empty use set, and the unboxing operation is only

allowed in a context where the use set matches the box’s capabilities, as before.

The introduction and elimination of type abstractions (tabs) and (tapp) are standard. cap is not

allowed in the deep capture set of the type argument 𝑆 ′ in (tapp), as it leads to ambiguity in the

meaning of caps and breaks the translation from Reacap to Capless (cf. Section 4.3).

Let bindings (let) are typed in a standard manner. The mention of locally bound variable 𝑥 has

to be avoided in the use set 𝐶 and the result type𝑈 by subcapturing and subtyping, respectively.

We discuss the more interesting typing rules for abstraction and application next.

4.2.1 Abstraction and application. The (abs) rule mostly follows that of System Capless. A function

that does not declare its parameter 𝑥 as used (𝛼 = 𝜖) is accordingly barred from using the associated

reach capability 𝑥∗ in the use set 𝐶 of the body.

Dependent function application (app) resolves reach capabilities. The reach capability of a

function with use-parameter (𝛼 = •) is substituted with the call-site argument’s deep capture set:

Definition 4.1 (Deep Capture Set). The deep capture set of a type 𝑇 under context Γ, denoted as
dcs(Γ,𝑇 ), is defined as follows:

dcs(Γ,⊤) = {} dcs(Γ,∀[𝑋 <: 𝑆]𝑇 ) = dcs(Γ,𝑇 )
dcs(Γ, 𝑋 ) = dcs(Γ, 𝑆) if 𝑋 <: 𝑆 ∈ Γ dcs(Γ,□𝑇 ) = dcs(Γ,𝑇 )

dcs(Γ,∀𝛼 (𝑧 : 𝑇 )𝑈 ) = dcs(Γ,𝑈 ) \ {𝑧, 𝑧∗} dcs(Γ, 𝑆 ∧𝐶) = dcs(Γ, 𝑆) ∪𝐶

dcs(Γ,∀[𝑐]𝑇 ) = dcs(Γ,𝑇 ) \ {𝑐}
dcs(Γ, 𝜅 [𝑇1, · · · ,𝑇𝑛]) =

⋃
𝑋+
𝑖
dcs(Γ,𝑇𝑖 ) if 𝜅 = (𝑋 𝜈1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ↦→ 𝑆 ∈ Θ

The deep capture set notion dcs(Γ,𝑇 ) formally answers "what is in the box?" of a boxed capture

type. Our definition generalizes to a richer language like Scala with generic type constructors, e.g.,

dcs(Γ, List[𝑆]) = dcs(Γ, 𝑆). Variance-aware substitution [𝑥∗ :=𝜈 𝐶] replaces covariant occurrences
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Typing 𝐶 ; Γ ⊢ 𝑡 : 𝑇
𝑥 : 𝑆 ∧𝐶 ∈ Γ

{𝑥∗} ⊢ 𝑆 { 𝑆 ′

{𝑥 }; Γ ⊢ 𝑥 : 𝑆 ′ ∧ {𝑥 }
(var)

𝐶 ′
; Γ ⊢ 𝑎 : 𝑇 ′

Γ ⊢ 𝐶′ <: 𝐶 Γ ⊢ 𝑇 ′ <: 𝑇
Γ ⊢ 𝐶,𝑇 wf

𝐶 ; Γ ⊢ 𝑎 : 𝑇

(sub)

𝐶 ′
; Γ ⊢ 𝑥 : 𝑆 ∧𝐶

{}; Γ ⊢ □𝑥 : □ (𝑆 ∧𝐶 )
(box)

𝐶 ; Γ ⊢ 𝑥 : □ (𝑆 ∧𝐶 )
𝐶 ; Γ ⊢ 𝐶 � 𝑥 : 𝑆 ∧𝐶

(unbox)

𝐶 ; Γ, 𝑥 : 𝑇 ⊢ 𝑡 : 𝑈 Γ ⊢ 𝑇 wf 𝑥∗ ∉ 𝐶 if 𝛼 = 𝜖

{}; Γ ⊢ 𝜆𝛼 (𝑥 : 𝑇 )𝑡 : (∀𝛼 (𝑥 : 𝑇 )𝑈 ) ∧ (𝐶 \ {𝑥, 𝑥∗})
(abs)

𝐶 ′
; Γ ⊢ 𝑥 : (∀𝛼 (𝑧 : 𝑇 )𝑈 ) ∧𝐶 𝐶 ′

; Γ ⊢ 𝑦 : 𝑆 ∧𝐷

Γ ⊢ 𝑆 ∧𝐷 <: 𝑇 Γ ⊢ dcs(Γ, 𝑆 ) <: 𝐶′
if 𝛼 = •

𝐶 ′
; Γ ⊢ 𝑥 𝑦 : [𝑧∗ :=+ dcs(Γ, 𝑆 ) ] [𝑧 := 𝑦 ]𝑈

(app)

𝐶 ; Γ, 𝑐 ⊢ 𝜆[𝑐 ]𝑡 : 𝑇 Γ ⊢ 𝐶 wf

{}; Γ ⊢ 𝜆[𝑐 ]𝑡 : (∀[𝑐 ]𝑇 ) ∧𝐶
(cabs)

𝐶 ; Γ ⊢ 𝑥 : (∀[𝑐 ]𝑇 ) ∧𝐶 ′ Γ ⊢ 𝐷 wf

𝐶 ; Γ ⊢ 𝑥 [𝐷 ] : [𝑐 := 𝐷 ]𝑇
(capp)

𝐶 ; Γ, 𝑋 <: ⊤ ⊢ 𝑡 : 𝑇
{}; Γ ⊢ 𝜆[𝑋 <: ⊤]𝑡 : (∀[𝑋 <: ⊤]𝑇 ) ∧𝐶

(tabs)

𝐶 ; Γ ⊢ 𝑥 : (∀[𝑋 <: ⊤]𝑇 ) ∧𝐶 ′

cap ∉ dcs(Γ, 𝑆 )
𝐶 ; Γ ⊢ 𝑥 [𝑆 ] : [𝑋 := 𝑆 ]𝑇

(tapp)

𝐶 ; Γ ⊢ 𝑡 : 𝑇 𝐶 ; (Γ, 𝑥 : 𝑇 ) ⊢ 𝑢 : 𝑈

Γ ⊢ 𝐶,𝑈 wf

𝐶 ; Γ ⊢ let 𝑥 = 𝑡 in 𝑢 : 𝑈

(let)

Subcapturing Γ ⊢ 𝐶1 <: 𝐶2 same as Figure 2 but without the (sc-bound) rule

Subtyping Γ ⊢ 𝑇1 <: 𝑇2
The (top) and (capt) rules are the same as in Figure 2. The (trans) and (refl) rules are the same as in Figure 2 but work on

capturing types.

Γ ⊢ 𝑇1 <: 𝑇2
Γ ⊢ □𝑇1 <: □𝑇2

(boxed)

(Γ, 𝑐 ) ⊢ 𝑇1 <: 𝑇2
Γ ⊢ ∀[𝑐 ]𝑇1 <: ∀[𝑐 ]𝑇2

(cfun)

Γ, 𝑥 : 𝑇2 ⊢ 𝑈1 <: 𝑈2 Γ ⊢ 𝑇2 <: 𝑇1 𝛼1 ⪯ 𝛼2

Γ ⊢ ∀𝛼
1 (𝑥 : 𝑇1 )𝑈1 <: ∀𝛼

2 (𝑥 : 𝑇2 )𝑈2

(fun)

Γ, 𝑋 <: ⊤ ⊢ 𝑇1 <: 𝑇2
Γ ⊢ ∀[𝑋 <: ⊤]𝑇1 <: ∀[𝑋 <: ⊤]𝑇2

(tfun)

𝜅 = (𝑋 𝜈
1

1
, · · · , 𝑋+

𝑖 , · · · , 𝑋
𝜈𝑛
𝑛 ) ↦→ 𝑆 ∈ Θ Γ ⊢ 𝑇𝑖 <: 𝑇 ′

𝑖

Γ ⊢ 𝜅 [𝑇1, · · · ,𝑇𝑖 , · · · ,𝑇𝑛 ] <: 𝜅 [𝑇1, · · · ,𝑇 ′
𝑖 , · · · ,𝑇𝑛 ]

(applied-p)

𝜅 = (𝑋 𝜈
1

1
, · · · , 𝑋 −

𝑖 , · · · , 𝑋
𝜈𝑛
𝑛 ) ↦→ 𝑆 ∈ Θ Γ ⊢ 𝑇 ′

𝑖 <: 𝑇𝑖

Γ ⊢ 𝜅 [𝑇1, · · · ,𝑇𝑖 , · · · ,𝑇𝑛 ] <: 𝜅 [𝑇1, · · · ,𝑇 ′
𝑖 , · · · ,𝑇𝑛 ]
(applied-m)

𝜅 = (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ↦→ 𝑆 ∈ Θ ∀𝑋+
𝑖 , cap ∉ dcs(Γ,𝑇𝑖 )

Γ ⊢ 𝜅 [𝑇1, · · · ,𝑇𝑛 ] <: [𝑋1 :=𝑇1, · · · , 𝑋𝑛 :=𝑇𝑛 ]𝑆 Γ ⊢ [𝑋1 :=𝑇1, · · · , 𝑋𝑛 :=𝑇𝑛 ]𝑆 <: 𝜅 [𝑇1, · · · ,𝑇𝑛 ]
(dealias)

Reach Refinement 𝐶 ⊢ 𝑇 { 𝑈

𝐶 ⊢ ⊤ { ⊤ (r-top)

𝐶 ⊢ 𝑋 { 𝑋 (r-tvar)

𝐷 ⊢ 𝑆 { 𝑆 ′

𝐷 ⊢ 𝑆 ∧𝐶 { 𝑆 ′ ∧ [cap := 𝐷 ]𝐶
(r-capt)

𝐷 ⊢ 𝑇 { 𝑇 ′

𝐷 ⊢ ∀[𝑐 ]𝑇 { ∀[𝑐 ]𝑇 ′

(r-cfun)

𝐷 ⊢ 𝑇 { 𝑇 ′

𝐷 ⊢ □𝑇 { □𝑇 ′

(r-boxed)

𝐷 ⊢ 𝑇 { 𝑇 ′

𝐷 ⊢ ∀[𝑋 <: ⊤]𝑇 { ∀[𝑋 <: ⊤]𝑇 ′

(r-tfun)

𝐷 ⊢ ∀𝛼 (𝑧 : 𝑇 )𝑈 { ∀𝛼 (𝑧 : 𝑇 )𝑈
(r-fun)

𝜅 = (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ↦→ 𝑆 ∈ Θ
∀𝑋+

𝑖 , 𝐷 ⊢ 𝑇𝑖 { 𝑇 ′
𝑖 ∀𝑋 −

𝑖 ,𝑇
′
𝑖 =𝑇𝑖

𝐷 ⊢ 𝜅 [𝑇1, · · · ,𝑇𝑛 ] { 𝜅 [𝑇 ′
1
, · · · ,𝑇 ′

𝑛 ]
(r-applied)

Fig. 4. Static semantics of System Reacap.

of 𝑥∗ with𝐶 and contravariant ones with {}. 𝜈 can be either + (covariant) or − (contravariant). The

starting variance is +. This ensures the subtyping relation is preserved under substitution.

4.2.2 Subcapturing and Subtyping. The subsumption rule (sub) allows refining the use set 𝐶 to 𝐶′

and the type 𝑇 to 𝑇 ′
. It can only be applied on an answer 𝑎, which is either a value or a variable,
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but not general terms, due to the translation mechanism from Reacap to Capless, which will be

discussed in Section 4.3.

Like System Capless, subcapturing and subtyping follows those of System CC<:□ [6], which are

mostly unsurprising. We define an ordering ⪯ on annotations defined by 𝛼 ⪯ 𝛼 and 𝜖 ⪯ •, i.e.,
non-use functions can pass for use functions, but not vice versa (as in (fun)). The rules (applied-p)

and (applied-m) supports argument subtyping for applied types with respect to the variance.

(dealias) deals with the expansion of applied types.

4.2.3 Reach Refinement. Reach refinement 𝐶 ⊢ 𝑇 { 𝑈 replaces certain covariant occurrences of

cap in type 𝑇 with the capture set 𝐶 , where 𝐶 is often the reach capability of a variable (e.g., in

the (var) rule). As shown in Figure 4, refinement is defined recursively on the structure of types.

The base cases for top types and type variables (r-top) and (r-tvar) leave the type unchanged. For

capturing types (r-capt), refinement recursively applies to the shape type and directly substitutes

occurrences of cap in the capture set with𝐶 . For boxed types (r-boxed) and type functions (r-tfun),

refinement is applied to the inner type. For applied types (r-applied), refinement is applied to

covariant type arguments and contravariant ones are left unchanged. Reach refinement touches

neither the domain nor the codomain of function types (r-fun), which is due to the translation

scheme discussed in Section 2.2. This is further discussed in the Section B.3.

4.2.4 Type Definitions. Admittedly, this restriction that prevents refining function types indeed

imposes a loss in expressiveness. For example, church-encoded data types cannot be properly

refined. Nevertheless, we can recover the expressiveness thanks to type definitions and applied

types. As an example, consider the church-encoded pair type:

Pair = (𝑋+
1
, 𝑋+

2
) ↦→ ∀[𝑋𝑅 <: ⊤]∀(𝑧 : 𝑋1 ⇒ 𝑋2 ⇒ 𝑋𝑅 )𝑋𝑅

Assume that the applied type Pair[□ IO∧ {cap},□ IO∧ {cap}] is bound to a variable 𝑥 . (r-applied)

refines this type to Pair[□ IO∧ {𝑥∗},□ IO∧ {𝑥∗}], which can then be expanded to ∀[𝑋𝑅 <: ⊤]∀(𝑧 :

□ IO ∧ {𝑥∗} ⇒ □ IO ∧ {𝑥∗} ⇒ 𝑋𝑅)𝑋𝑅 by the (dealias) rule in subtyping. Essentially, applied

types change the way the existential quantifications are scoped: In particular, the applied type

Pair[□ IO ∧ {cap},□ IO ∧ {cap}] is interpreted as ∃𝑐. Pair[□ IO ∧ {𝑐},□ IO ∧ {𝑐}]. The existential
variable is quantified at the outer-level. The caps can thus safely be replaced by 𝑥∗ in the refinement.

4.3 Translation to System Capless
System Reacap is a surface language that “desugars” to Capless in terms of a type-preserving

translation (Section 5.3). The core idea of the translation is to recursively convert the occurrences

of cap in parameter positions to universal capture parameters, and those in function result types to

existential quantifications. Consider the System Reacap type of themkIterator function (Section 2.2):

∀[𝑋 <: ⊤]∀• (𝑥 : List[□ (Unit ⇒ 𝑋 ) ] )Iterator[𝑋 ] ∧ {𝑥∗}

It translates to:

∀[𝑋 <: ⊤]∀[𝑐𝑥 <: {} ]∀[𝑐𝑥∗ ] (∀ (𝑥 : List[□ (Unit → 𝑋 ) ∧ {𝑐𝑥∗ } ] ∧ {𝑐𝑥 })Iterator[𝑋 ] ∧ {𝑐𝑥∗ }) ∧ {𝑐𝑥∗ }

Here, two universal capture parameters 𝑐𝑥 and 𝑐𝑥∗ are introduced. 𝑐𝑥 corresponds to the outermost

capture set of the parameter 𝑥 , and is upper-bounded by an empty set in this case. 𝑐𝑥∗ corresponds

to the caps inside the box of 𝑥 , which is exactly the meaning of the reach capability 𝑥∗. 𝑥 is a

use-parameter, thus 𝑐𝑥∗ is allowed to be used in the body of the function.

One surprising aspect of the translation is that subtyping in the source language induces term

transformations in the target language. Consider a Reacap term 𝑎 whose type 𝑇 is a subtype of

𝑈 . Let 𝑇 ′
and𝑈 ′

be the translated types of 𝑇 and𝑈 respectively, and 𝑎′ be the translated term of

𝑎 of type 𝑇 ′
. In general, 𝑎′ does not directly conform to the type 𝑈 ′

. It needs to be transformed

to a term 𝑎′′ to conform to the type 𝑈 ′
. In fact, widening a capture set 𝐶 to {cap} in the source

language corresponds to packing the capture set into an existential in the target language. For
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instance, consider the types ∀(𝑥 : File ∧ {cap})File ∧ {𝑥} and ∀(𝑥 : File ∧ {cap})File ∧ {cap}. The
first type is a subtype of the second in Reacap. However, their translations differ:

∀(𝑥 : File∧ {cap})File∧ {𝑥 } translates to ∀[𝑐𝑥 ]∀ (𝑥 : File∧ {𝑐𝑥 })File∧ {𝑐𝑥 }
∀(𝑥 : File∧ {cap})File∧ {cap} translates to ∀[𝑐𝑥 ]∀ (𝑥 : File∧ {𝑐𝑥 })∃𝑐. File∧ {𝑐 }

To transform a term of the first translated type to one of the second type, we must perform an

eta-expansion to pack the capture set {𝑐𝑥 } into the existential quantification:

𝜆[𝑐𝑥 ]𝜆 (𝑥 : File∧ {𝑐𝑥 }) .⟨{𝑐𝑥 }, 𝑎𝑓 𝑥 ⟩

where 𝑎𝑓 is the translated version of the original function.

The necessity of term transformations motivates us to restrict subtyping on answers (sub), which

ease the transformation process; and to restrict type parameters to be unbounded, due to the lack of

term-level witnesses for subtyping over type parameters. When translating subtyping derivations

to System Capless, we require term-level witnesses that can be transformed to adapt between

different translated types. However, subtyping between bounded type parameters exists purely

at the type level with no corresponding term representation that could be transformed during

translation. For instance, consider a type function 𝑓 : ∀[𝑋 <: (IO ∧ {io} → Unit)] . . . and an

application 𝑓 [IO∧ {cap} → Unit], where IO∧ {cap} → Unit <: IO∧ {io} → Unit. Translating this

application form requires the source-language subtyping relation which materializes into term

transformation in the target language, but no term is available to be adapted at the type application

site. Since we cannot produce the necessary term-level adaptations for bounded type parameters,

we restrict all type parameters to be unbounded, so that the translation remains complete.

5 Metatheory
We prove the type soundness of System Capless (Section 3), through standard progress and preser-

vation theorems as well as its scope safey. Those proofs are fully mechanized in Lean 4.

In addition, we relate the surface language System Reacap (Section 4) to the core language

System Capless via a type-preserving translation. Specifically, any well-typed program in Reacap
can be translated to a well-typed one in Capless with an equivalent type.

5.1 Type Soundness
We take a standard syntactic approach towards type soundness, proving the following theorems.

Theorem 5.1 (Preservation). If (1) ⊢ Σ :: Γ, (2) 𝐶; Γ ⊢ 𝑡 : 𝐸, and (3) ⟨Σ | 𝑡⟩ −→ ⟨Σ′ | 𝑡 ′⟩, then there

exist 𝐶′
and Δ such that (1) ⊢ Σ′

:: (Γ,Δ); and (2) 𝐶′
; (Γ,Δ) ⊢ 𝑡 ′ : 𝐸.

Here, ⊢ Σ :: Γ denotes store typing: given a store Σ, this relation produces a typing context Γ
whose bindings assign a type to each corresponding value in the store. The definition is given in

Figure 11 in Appendix C.1. ⟨Σ | 𝑡⟩ −→ ⟨Σ′ | 𝑡 ′⟩ denotes the reduction relation.

Theorem 5.2 (Progress). Given (1) ⊢ Σ :: Γ, and (2) 𝐶; Γ ⊢ 𝑡 : 𝐸, we can show that either 𝑡 is an

answer, or there exist Σ′
and 𝑡 ′ such that ⟨Σ | 𝑡⟩ −→ ⟨Σ′ | 𝑡 ′⟩.

5.2 Scope Safety
Following Boruch-Gruszecki et al., we add an extension to System Caplesswhich introduces scoped

capabilities. By proving it sound, we show that the system can ensure the scoping of capabilities.

5.2.1 Static Semantics of Scoped Capabilities. Figure 5 presents the extensions. We add a control

delimiter boundary[𝑆] as ⟨𝑐, 𝑥⟩ in 𝑡 (mirroring boundary/Break in Scala 3) that introduces a scope

with a fresh abstract capture 𝑐 and a scoped capability Break[𝑆]. The capability may be used only

within its defining boundary; the type system enforces this as follows: (boundary) checks the body
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Syntax

𝑠, 𝑡, 𝑢 := boundary[𝑆 ] as ⟨𝑐, 𝑥 ⟩ in 𝑡 | · · · Term

𝑅, 𝑆 := Break[𝑆 ] | · · · Shape Type

Subtyping Γ ⊢ 𝑆1 <: 𝑆2

Γ ⊢ 𝑆2 <: 𝑆1
Γ ⊢ Break[𝑆1 ] <: Break[𝑆2 ]

(break)

Typing Γ ⊢ 𝑡 : 𝑇

𝐶 ; (Γ, 𝑐 : CapSet, 𝑥 : Break[𝑆 ] ∧ {𝑐 }) ⊢ 𝑡 : 𝑆 Γ ⊢ 𝑆 wf

(𝐶 \ {𝑐, 𝑥 }) ; Γ ⊢ boundary[𝑆 ] as ⟨𝑐, 𝑥 ⟩ in 𝑡 : 𝑆

(boundary)

𝐶 ′
; Γ ⊢ 𝑥 : Break[𝑆 ] ∧𝐶 𝐶′

; Γ ⊢ 𝑦 : 𝑆

𝐶 ′
; Γ ⊢ 𝑥 𝑦 : 𝐸

(invoke)

Fig. 5. Extensions to static rules of Capless.

under Break, binds the fresh 𝑐 , and requires the result type 𝑆 to be well-formed in the outer context

Γ, which suffices to enforce scoping. (invoke) types invocations of Break, and (break) provides

subtyping between Break capabilities.

5.2.2 Dynamic Semantics of Scoped Capabilities. In the reduction semantics we introduce (1)

runtime labels to identify boundaries and (2) a scoping construct that delimits a boundary together

with its Break capability. Invoking Break requires a matching scope in the surrounding evaluation

context; otherwise evaluation is stuck. For brevity we elide the full runtime forms here and refer to

Section A.3 for the complete definition.

5.2.3 Type Soundness. We prove standard progress and preservation theorems to establish the

type soundness of the extended system. Its type soundness implies that the system enforces the

scoping discipline of the Break capability, as a scope extrusion will lead to a stuck evaluation. The

proof is fully mechanized in Lean 4.

5.3 Type Preserving Translation
We develop a translation system that translates well-typed programs in System Reacap to System

Capless. This essentially provides an understanding of caps and reach capabilities: they can be

understood as existential and universal quantifications of capture sets. The translation is stated

and proven with pen and paper. See Appendix D for the full details.

Theorem 5.3 (Translation Preserves Typing). Let 𝜏 = ⟨𝐷, 𝜌, 𝜌∗⟩ be a proper translation context

under type contexts Γ and Δ, and 𝐶; Γ ⊢ 𝑡 : 𝑇 be a typing derivation in System Reacap. Then, if 𝑡 is
either of the application form 𝑥 𝑦 or the let-binding form let 𝑧 = 𝑠 in 𝑢, there exists a term 𝑡 ′ in System

Capless such that J𝐶K𝐷 ′
;Δ ⊢ 𝑡 ′ : ∃𝑐. J𝑇 K{𝑐 } for some 𝐷 ′

; otherwise, there exists a term 𝑡 ′ in System

Capless such that J𝐶K𝐷 ′
;Δ ⊢ 𝑡 ′ : J𝑇 K𝐷 ′

for some 𝐷 ′
, and 𝑡 ′ is an answer when 𝑡 is an answer.

⟨𝐷, 𝜌, 𝜌∗⟩ is the translation context in System Decap, a translation system that converts capture

sets and types in Reacap into those in Capless. The translation context consists of (1) a capture set

𝐷 assigning meaning to caps, (2) and two mappings 𝜌 and 𝜌∗ that map capabilities (including reach

capabilities) to their corresponding capture sets. The notation J𝑇 K𝐷 denotes the translation of a

Reacap type 𝑇 to a Capless type, and similarly for J𝐶K𝐷 , which denotes the translation of a Reacap
capture set𝐶 . The key idea of the translation is to interpret caps in the argument types as universal

quantifications and those occuring covariantly in the result type as existential quantifications.

6 Capture Tracking for Asynchronous Programming: A Case Study
We study the usage of capture checking and more specifically reach capabilities through some

real-world examples of asynchronous programming.
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6.1 Futures and Scoping. Scala supports a simple form of concurrency with Futures. A Future takes

a computation and runs it concurrently, under a provided execution context. Note that despite

the computation not being stored by the Future, it can hold on to capabilities captured by the

computation after Future.apply returns. Therefore, a Future should capture both the execution

context and its computation. We model the Future constructor using a context function [38]:

object Future { def apply[T](comp: => T)(using ec: ExecutionContext^): Future[T]^{ec, comp} }

The following program attempts to read a file and filter its content, using the standard Using

resource-pattern. However, notice that Future.apply does not run the reading procedure to the end,

instead returning immediately and causing Using to close the file right after.

def findLines(p: String )(using ec: ExecutionContext ^): Future[Seq[String ]]^{ec} =

Using(File.open("text.txt")): (file: File^) => // ERROR: file leaked

Future.apply: // : Future[Seq[String ]]^{ec, file}

file.readLines () // : Iterator[String ]^{ file}

.filter(_.contains(p)) // : Iterator[String ]^{ file}

.toSeq // : Seq[String]

The compiler rejects the program, detecting that Future.apply returns a Future capturing file as part

of the computation, and does not let it escape the Using scope. The fix here is to open the file under

the Future.apply call.

6.2 Composing Futures. When writing concurrency code, it is common to create multiple concurrent

computations, and then combine them either by requiring both or either (racing) futures:

extension [T](@use xs: Seq[Future[T]^])

def all(using ec: ExecutionContext^): Future[Seq[T]]^{ec, xs*}

def first(using ec: ExecutionContext^): Future[T]^{ec, xs*}

The extension methods all and first create a future that combines or races the input futures. The

resulting Future upholds all scoping restrictions of the futures in the input sequence by capturing

the reach capability of the sequence itself. As we saw in Section 2.2, xs is pure, but we want to

“open” the sequence of futures to await for their results, effectively using the futures’ captures. For

this reason, the capture checker requires the @use annotation; and when added, it will propagate the

reach capability xs* to the capture set of the caller. This is demonstrated in the following example:

withIO:

withThrow:

val futs: Seq[Future[Int]^{async, io, throw}] =

val f1: Future[Int]^{async, io} = Future(useIO())

val f2: Future[Int]^{async, throw} = Future(useThrow())

() => futs.all // (() -> Future[Seq[Int]])^{async, io, throw}

The returned function only captures futs, a pure variable. However, @use requires the .all call to

add the reach capabilities of futs to the closure, resulting in the rejection of the program. Without

this check, we would be able to invoke io and throw outside of their scope.

The implementation of .all uses a similar construct to the collect example in Section 1, named

Future.Collector[T]. A collector takes a sequence xs of Future[T] and exposes a read-only channel that

passes back the futures as they are completed. Naturally, the returned futures have the same capture

set as the union of all captures of the input futures – or the reach capability xs*. To implement .all,

we create a Collector from the given futures, and chain the results on each as they are completed -

guaranteeing that failing futures immediately return the exception to the caller as soon as possible:

extension [T](@use xs: Seq[Future[T]^]) def all(using ExecutionContext ^) =

val results = Collector(xs). results // : Channel[Future[T]^{xs*}]

// create a future that poll the results channel xs.size times
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val poll = (0 until xs.size)

.foldLeft(Future.unit )((fut , _) => fut.andThen(_ => results.read ()))

poll.andThen: _ => // all futures are resolved at this point

xs.foldLeft(Future.apply(Seq.empty )): (seq , fut) =>

seq.zip(fut) // : Future [(Seq[T], T)]^{xs*}

.map(_ +: _) // : Future[Seq[T]]^{xs*}

6.3 Mutable collectors. A mutable version of Collector[T] also exists, which is useful for implemen-

tations of, e.g., work queues, where each job may create new concurrent jobs, but results should be

arriving as soon as possible. Unfortunately, for mutable collections like MutableCollector[T], reach

capabilities are not expressive enough: the collection may be created empty (and hence no longer

accept inserting capturing values), but allowing the capture set of the collection’s items to grow is

unsound. In such cases, we reach a middle ground and require the user to declare in advance the

upper-bound capture set, with an explicit parameter. The collection then can accept any item with

an equal or smaller capture set without changes in types:

class MutableCollector[T, C^]():

val results: ReadChannel[Future[T]^{C}]

def remaining: Int

def add(fut: Future[T]^{C})

def parSearch(run: Node => Seq[Node], start: Node)(using ec: ExecutionContext ^) =

val queue = MutableCollector[List[Node], {ec, run }]()

queue += Future.apply(Seq(start))

def loop (): Future[Unit ]^{ec, run} =

if queue.remaining == 0 then Future.unit else // : Future[Unit ]^{}

val nextToProcess = queue.results.read() // : Future[Seq[Node ]]^{ec, run}

nextToProcess.andThen: children =>

children.foreach(node => queue += Future.apply(run(node )))

loop()

loop()

The above example illustrates the use of mutable collectors to implement parallel tree search. In

parSearch, we create a mutable collector that accepts Futures that can capture the execution context

and capabilities used by run. We utilize the collector as a work queue to immediately spawn new

jobs as soon as one comes back, resulting in minimal downtime waiting while more children are

discovered. To specify a capture set, we use the { } syntax in the type parameter. Note that there

is very little notational overhead when implementing parSearch: the mutable collector requires a

non-inferrable capture set, and loop, being recursive, requires a specified return type. All other type

annotations in comments, including capture annotations, are inferred by the compiler.

7 Evaluation
While the previous case study demonstrated the practicality of our approach through qualitative

analysis of common programming patterns, this section provides a quantitative evaluation by

measuring performance and required code changes when adopting capture checking in practice.

7.1 Implementation
Table 1. Compiler performance compiling the capture-

checked standard library. Average of 10 runs, measured

on Linux PC (Ryzen 3800x, 32GB RAM, NixOS, JDK11)

Phase Time (ms) Throughput

Typing 10436 ± 220 (35.80%) 4596 ± 99 loc/s

CC 3896 ± 48 (13.36%) 12307 ± 148 loc/s

Other 14821 ± 269 (50.84%) 3236 ± 58 loc/s

Total 29154 ± 395 (100.0%) 1645 ± 22 loc/s

The Scala 3 capture checker provides a complete imple-

mentation of capture tracking with reach capabilities, as

well as optional universal quantification of capture sets.

It is enabled by an experimental language import.
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The capture checker runs after the type checker and

several transformation phases. It re-checks the typed syn-

tax tree of a compilation unit, deriving subcapturing con-

straints between capture sets that are solved incremen-

tally with a propagation-based constraint solver that keeps track of which capabilities are known

to form part of a capture set. To understand the performance impact of capture checking, we show

the compilation time breakdown of compiling the capture-checked standard library in Table 1.

Capture checking takes approximately half the time compared to the previous typing phase and

accounts for less than 15% of the total compilation time, which is reasonable. All type arguments

are treated as boxed, and boxing and unboxing operations are inferred in an adaptation step that

compares actual against expected types.

7.2 Porting the Scala Standard Library
To evaluate the practicality of capture checking, we have ported a significant portion of the Scala

standard library to compile with the Scala 3 capture checker. In particular, the collections library is

ported in full, alongside common language structures like Array and Function traits. This shall be

referred to as lib-cc, as opposed to the original standard library (lib), which is at version 2.13.15 at

the time of comparison.
Table 2. Number of changes to capture-checked standard library, grouped by
categories of change. "Total in lib-cc" shows the total number of definitions,
variables, higher order functions, casts and lines of code in the library. "Mean-
ingful" measures lines of changes excluding whole-line comments, blank lines
and feature imports. For reference, "Total in lib" shows corresponding numbers
in the original standard library (Scala 2.13.15), including parts yet implemented
by lib-cc. i.e. 66% of the standard library is collections.

Type of Change Added/Changed Total in lib-cc Total in lib

Capture sets on definitions

691 functions

91 classes

6189 functions

684 classes

11113 functions

1518 classes

- Only universal captures 351

- Only capture set on returns 379

Capture sets on local variables 53 4583 6262

Restrict functions to pure 52 797 1203

Reach capabilities 19

@use annotations 12

Unsafe casts 5 810 1325

Unsafe capture set removal 25

Class hierarchy changes 2

- New classes 3

Total lines +1418/-1407 meaningful

52160 total

31395 code

94635 total

48210 code

We measure the num-

ber of changes by direct

comparison (using stan-

dard diff) between lib-cc

and lib source code. The

changes are categorized

into Table 2. Overall,

capture checking annota-

tions require only about

3% of lines of code to be

changed, with over half

of the changes involv-

ing only adding capture

sets to function and class

declarations. Despite the

vast majority (>98.5%) of

lib-cc being generic col-

lections, about 87% of all

classes and 88% of methods do not require any signature change - all existing code will compile

as-is. This is thanks to boxing type parameters as well as built-in type and capture set inference.

7.2.1 Additional annotations. For many cases, the existing implementation is sufficient to handle

arbitrarily capturing inputs and outputs, but extra capture set annotations are needed to communi-

cate this fact. A prominent group of this category are higher order functions like List.map(f: A => B),

whose parameters are only used and not captured in the return value. Interestingly, Scala’s capture

checking implementation treats “fat-arrow” function types as effect-polymorphic, and therefore

List.map does not require any changes. There are some false-positives, where a pure function is

expected: the maxBy method on an IterableOnce[A] expects a function that extracts a property of A,

and should not perform any effects. We restrict functions to pure (A -> B) in such cases.
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Another variant of this category involves passing parameters of a possibly capturing type, such

as an iterator in the following method of List[A]:

def prependAll(it: IterableOnce[A]^): List[A]

In this case, prependAll should consume items from the given iterator (possibly invoking capabilities

captured in it), and then return a new prepended list without capturing it. As-is, prependAll would

only allow pure iterators to be passed in, greatly reducing its usefulness. However, adding the

universal capture annotation completely fixes this issue. Over half (51.7%) of all changed signatures

involve only this addition of cap.

In some cases, the return value captures one or more of its parameters (and possibly the current

this). Of particular note is the implementation of functional operations of iterators and other lazy

data structures, e.g., the following signature of map on an Iterator[A]:

def map[B](f: A => B): Iterator[B]^{this, f}

Note that the return type captures both the original iterator (this) and the mapping function; and

this is also the only form of additional annotation required. Such changes are very common, and

make up of most of the remaining half of changes on signatures.

As expected, all instances of reach captures belong to flatMap (and flatten, which is a special case

of flatMap) implementations of (possily-)lazy data structures and interfaces. All such instances in

parameter position show up with @use annotations. Both can be removed when overriding such

interfaces in a strict data structure like Map.

7.2.2 Guaranteeing Compatibility. To enable incremental adoption, Scala allows mixing capture-

checked and unchecked modules. However, compiling them together still presents challenges.

One current limitation is that explicit capture-set parameters cannot yet be used from unchecked

modules. For example, the class ConcatIterator[A] internally maintains a mutable linked list:

class ConcatIterator[A](var iterators: mutable.List[IterableOnce[A]^]):

// concatenate `it` with `this` into a new iterator

def concat(it: IterableOnce[A]^): ConcatIterator[A]^{this, it} = iterators ++= it.unsafeAssumePure

Similar to Section 6, such lists require an explicit capture parameter to track its elements’ capture

sets. To preserve compatibility, we instead opt for external tracking: moving the capture set of the

list to the ConcatIterator itself. This is unsafe (concat returns a new iterator reference with expanded

captures, but the old reference is still valid). Future work aims to lift this restriction safely.

Furthermore, interoperability between modules using lib-cc and lib necessitates strict binary

compatibility: no new classes or hierarchy changes. Fortunately, most collection classes are indi-

vidually capture-checked without such changes. One notable example is IndexedSeqView[A] - a lazy

view on a sequential collection - unsoundly implementing non-capturing operations similar to

List.map. To resolve this, we introduced a separate class hierarchy, achieving capture soundness at

the cost of potential link-time errors, which are easily identified during development.

8 Discussion
Towards fully path-dependent capabilities. Reach capabilities alone are coarse-grained,

because they track all the capabilities of a whole data structure rather than the capabilities of

individual elements. E.g., they do not reflect that a function only accesses the first element of a pair:

def fst(@use p: (() => Unit, () => Unit)): () ->{p*} Unit = p._1

val p: (() ->{io} Unit, () ->{fs} Unit) = ...

fst(p) // : () ->{io, fs} Unit instead of () ->{io} Unit

Passing p to takeFirst yields a result of type () ->{io, fs} Unit, capturing capabilities from both

components even though only the first component is returned. As a workaround, a precise version

can be defined in our system by falling back to explicit capture polymorphism:



What’s in the Box? (Draft) 111:23

def fstAlt[C1, C2](p: (() ->{C1} Unit, () ->{C2} Unit)): () ->{C1} Unit

However, this is antithetical to the lightweight nature of our system, which aims to avoid explicit

polymorphism in most cases. Has the lightweight syntax run out of steam already?

Fortunately, the expressive power of reach capabilities and the lightweight syntax can be greatly

amplified through Scala’s fully path-dependent types, generalizing reach capabilities on one variable

to full paths. We can give precise types to functions like fst and snd without resorting to explicit

capture polymorphism by capturing the paths to the individual components:

def fst( @use p: (() => Unit, () => Unit)): () ->{p._1*} Unit = p._1

def snd( @use p: (() => Unit, () => Unit)): () ->{p._2*} Unit = p._2

def copy(@use p: (() => Unit, () => Unit)): (() ->{p._1*} Unit, () ->{p._2*} Unit) = (fst(p),snd(p))

Indeed, the Scala capture checker already supports full paths in this way.

Scala also supports “capture-set members,” enabling capture polymorphism like in DOT [46]:

trait CaptureSet { type C^ /* declare capture-set member */ }

def capturePoly(c: CaptureSet)(f: File^{c.C}): File^{c.C} = f

We leave the exploration of the underlying theory for future work.

Telling a use from a mention. Another limitation of our system is that it cannot precisely

distinguish a “mention” of a variable from an actual “use” of it [20]. This stems from the (var) rule

in Figure 2, which always adds referenced variables to the use set. For example:

val f: () => Unit = ...

val g = () => f // : () ->{f} () ->{f} Unit

Although g does not invoke f and only returns it, f appears in its capture set, making g impure.

However, an equivalent yet pure version can be defined with explicit eta-expansion:

val g1 = () => () => f() // : () -> () ->{f} Unit

This alternative specifies the evaluation order more precisely, allowing the outer function to be

pure while the inner function captures f.

Our evaluation (Section 7) suggests this limitation is benign in practice. We encountered no

blockers while porting the Scala standard library. Accurately tracking such fine-grained patterns

would require a substantially richer system and remains interesting future work.

Fresh out of the box: Reasoning about aliasing and separation. Capture checking already

shows promise toward fearless concurrency [54] and a solution to the “what-color-is-your-function?”

problem [37] for Scala 3. To be fully effective in these areas, we plan to add reasoning about aliasing,

separation, and capability exclusivity, leading to a system that can express Rust-style ownership

patterns and advanced uses like safe manual memory management.

Reachability types (RT) [3, 52] (an independent line of work, unrelated to the Scala 3 capture-

checking effort) demonstrate that capture tracking supports reasoning about aliasing and separation,

powering compiler optimizations for impure functional DSLs in the LMS library for Scala 2 [9, 8].

RT is a box-free system
3
that handles generics by threading explicit type-and-capture quantifiers

through every definition [52]. It therefore faces the same dilemma as other box-free polymorphic

systems of requiring invasive changes (cf. Section 9). Our work for Scala 3 retrofits the existing

ecosystem as much as possible via boxing, perhaps the only realistic option to introduce CT into

Scala without a complete overhaul. That would alienate existing users.

Furthermore, Wei et al. [52] point out an issue of CT’s boxing mechanism and the way it is used

for escape-checking (see Section 2.1.3) in conjunction with freshly allocated objects:

withFile("file.txt"): f =>

val r = new Ref(0) // Ref[Int]^ <- freshly allocated object, would be Ref[Int]q in RT

3
Also note that our reach capabilities have no analogue in RT due to the absence of boxes.
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r // error, cannot unbox Ref[Int]^ in CT, but legal in RT

The most natural capture set for fresh values in CT is the top capability cap, but then it is impossible

for such values to escape the scope they were created in. Hence, Wei et al. reject having cap and

instead assign a “freshness marker” q to fresh values, which is not a subcapturing top element.

System Capless (Section 3) replaces the top capability cap with explicit quantification under

the hood. This yields a principled basis for freshness: whereas cap denotes “arbitrary unknown

capabilities,” we can extend existential quantifiers to distinguish arbitrary from fresh capabilities.

For instance, with such extensions, the function mkRef that creates a fresh Ref[Int] can be typed

as Int -> ∃𝑐 : Fresh. Ref[Int]^{𝑐}, where ∃𝑐 : Fresh.𝑇 represents a fresh existential type. In the surface

language, the type can be simply Int -> Ref[Int]^, with the hat ^ denoting an existential. This would

enable the following example:

def makeCounter(init: Int): ∃𝑐 : Fresh. Pair[box () ->{𝑐} Int, box () ->{𝑐} Int] =

val r = mkRef(init)

Pair(box(() => r.get), box(() => r.set(r.get + 1)))

val counter = makeCounter(0) // c: Fresh, counter: Pair[box () ->{c} Int, box () ->{c} Int]

val get = unbox(counter.snd) // : () ->{counter} Int // ok

The last line is legal because c is fresh, whichmeans that it represents capabilities that are guaranteed

to not conflict with any existing scope, making unboxing safe without escape concerns. This example

is also supported by RT through their self-references [52], which allow closures to refer to their

own capture sets. While both approaches express this pattern, existential quantification arguably

provides a more natural and principled representation.

To summarize, CT embed capturing types via boxing, whereas RT rely on explicit type-and-

capture parameters threaded through every generic definition, and a different subcapturing relation.

The approaches are therefore already orthogonal, and the gap will widen as we progress on adding

a separation-checking layer on top of System Capless in the future.

Categorizing capabilities. Our system covers Scala’s standard collections library, but not yet

the full standard library. A notable gap is Try[T], a sum of a value T and a (pure) exception. Its

constructor accepts a by-name T, evaluates it, and captures any thrown value; clients later call .get

to obtain T or rethrow. With the current system we type:

def apply[T](body: => T): Try[T] // should be Try[T]^{body.only[Control]}

Here body is (unboundedly) capture-polymorphic while Try[T] is pure. Although that matches the

value-level view (a boxed T or a pure exception), it breaks the exception discipline enforced by

Scala’s CanThrow capabilities [12, 39]: .get can rethrowwithout the corresponding capability. From the

capability view, the constructor should instead record a subset of body’s captures related to exception-

like control transfers—a class we call Control Capabilities. Expressing this requires extending CC

with (1) capability categories, and (2) category-restricted subsets (e.g. body.only[Control]).

Such categories arise elsewhere: label-safe delimited continuations require restricting captured

labels [41]; thread spawning must forbid capturing thread-local resources (e.g. mutex guards, stack

pointers, non-atomic counters); and mutability can be treated as its own category. We therefore see

capability categorization, especially for asynchronous code, as promising future work.

9 Related Work
To our knowledge, this is the first work that introduces an opt-in type system for tracking effects-

as-capabilities into a mainstream programming language, applying it to a widely-used standard

collections library. Although prior works have addressed effect tracking, capabilities, or resources,

they typically focus on effects or ownership rather than directly capturing retained capabilities.
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Concerns about retrofitting such systems into existing languages (especially in a non-invasive and

pragmatic manner as in our work) are rarely addressed in the literature.

Polymorphism across capabilities, effects, and ownership. Polymorphism is indispensable:

abstractions must work no matter which effect, resource, or ownership context they run in. Classic

polymorphic effect systems [28, 47] show how to track side effects, while region typing [49, 21],

uniqueness and linearity [50, 4, 30], and ownership types [13, 36, 7, 43, 17] control memory and

aliasing. Yet all of these scatter extra indices, regions, uniqueness flags, or ownership parameters

throughout every signature. Our capture-checking design avoids that clutter: it reuses Scala’s path-

dependent types for implicit polymorphism, and embeds capture-tracked types through boxing,

inspired by CMTT [35] and Effekt [10]. Boxing gently embeds a new type universe into the existing

one: existing type variables in old signatures can range over capturing types while preserving

parametricity. Consequently, the standard collections API needs no new type parameters, adoption

is strictly opt-in, and code that ignores capture checking remains fully source-compatible. Optional

explicit capture polymorphism is supported but rarely needed in practice (Section 7.2).

Practical Ownership and Capability Languages. Rust [31] employs an ownership model to

ensure memory safety without garbage collection. Its type system infers ownership, borrowing,

and lifetimes but imposes restrictive invariants, complicating higher-order functional programming

as well as implementations of data structures, like doubly-linked lists. Pony [42, 14, 15] uses object

and reference capabilities to control mutability and aliasing, achieving capability polymorphism

through complex viewpoint adaptation rules. Mezzo [2] tracks shared, exclusive, and immutable

ownership implicitly via permissions, but still requires explicit permission polymorphism for

generic signatures. Project Verona [1] simplifies memory management with hierarchical regions

and ownership semantics. It manages capabilities via isolated regions and viewpoint adaptation

through method overloading.

These systems exemplify qualified type systems [25, 19, 23]. Our work differs by qualifying types

explicitly with retained capabilities rather than permissions or regions, aligning more closely with

pure object capabilities [34]. The primary novelty compared to previous CT work [6] is introducing

reach capabilities, for which we are hard-pressed to find a direct analogue in the literature.

OCaml modal types. Efforts to bring Rust-style ownership to OCaml [48, 27] adopt a modal

type system that tracks an ambient effect context for enabling stack allocation and preventing

data races. Section 8 sketches how Scala’s capture checking can offer similar guarantees. Like our

work, these approaches aim for backward compatibility and lightweight signatures, yet they rely

on Hindley–Milner inference rather than our local type inference with path-dependent types. Tang

et al. [48] extend the modal approach to Frank-style effect handlers [26, 16], tracking effects via the

modal context rather than capture sets. Both systems sometimes require explicit polymorphism, but

for different reasons: their curried map over lists needs explicit quantifiers, whereas our capture-

checking formulation does not. We look forward to the final implementation and to clarifying the

precise connection between modal and capturing types.

Path-dependent types and type members for effects and capabilities. Wyvern [33, 32, 18]

builds on object-capabilities [34], first estimating authority with a whole-program analysis [32] and

later adding a path-dependent effect system [33] inspired by DOT [46]. Each object can declare an

abstract effect member that upper- or lower-bounds the effects its methods may perform, mirroring

DOT’s abstract type members. Our capture checking takes the complementary view: we record

the objects a value can reach in its capture set; the allowable effects follow implicitly from those

objects’ APIs. Thus both systems use the same abstraction and composition machinery, but Wyvern

names effects directly, while Scala names the resources through which those effects can occur.



111:26 Yichen Xu, Oliver Bračevac, Cao Nguyen Pham, and Martin Odersky

Similarly, associated effects for Flix [29] extend the same idea to type classes: each class can

declare an abstract effect row, giving first-class, per-instance effect polymorphism without extra

type parameters. Like Wyvern, it abstracts over effects; capture sets instead abstract over reachable

resources, thereby opening the door to providing alias-control guarantees (cf. Section 8).

2nd-class values. Osvald et al. [40] introduced 2nd-class values for Scala 2, i.e., values whose

lifetime is tied to their lexical scope, but their stratification hinders higher-order programming,

restricting currying and lazy collections. Xhebraj et al. [53] extend the idea with 2nd-class returns

(recovering currying) and explicit storage-mode polymorphism, yet rely on an unusual stack

semantics and still cannot express fully storage-mode generic types such as List[Q, T @mode[Q]].

Our boxing-based capture system avoids these limitations. It does not yet support privilege

lattices or bounding a closure’s free variables, features useful for fractional capabilities [53, Fig. 7],

which we expect to model via capability categories (Section 8).

10 Conclusion
This paper introduced reach capabilities and developed their foundations, backed by mechanized

type soundness and scope safety proofs. Reach capabilities made it possible to migrate the Scala 3

standard collections library to capture tracking with minimal adjustments. Our approach effectively

addresses limitations in handling capabilities within generic data structures and collections, a

significant milestone towards bringing lightweight and ergonomic effect systems to the masses.
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11 Data-Availability Statement
The artifacts accompanying this paper include: (1) a complete mechanized formalization of System

Capless in Lean 4, including the scope safety extension and associated metatheory; (2) a practical

implementation of capture checking integrated into the Scala 3 compiler; and (3) source code and

scripts for reproducing the paper’s case studies. The capture-checked version of Scala’s standard

collections library is included among these artifacts.
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A Additional Definitions
A.1 Well-formedness

Γ ⊢ ⊤ wf (wf-top)

𝑋 <: 𝑆 ∈ Γ

Γ ⊢ 𝑋 wf
(wf-tvar)

Γ ⊢ 𝑇 wf (Γ, 𝑥 : 𝑇 ) ⊢ 𝐸 wf

Γ ⊢ ∀(𝑥 : 𝑇 )𝐸 wf
(wf-fun)

Γ ⊢ 𝑆 wf (Γ, 𝑋 <: 𝑆 ) ⊢ 𝐸 wf

Γ ⊢ ∀[𝑋 <: 𝑆 ]𝐸 wf
(wf-tfun)

Γ ⊢ 𝐵 wf (Γ, 𝑐 <: 𝐵) ⊢ 𝐸 wf

Γ ⊢ ∀[𝑐 <: 𝐵 ]𝐸 wf
(wf-cfun)

(Γ, 𝑐 <: ∗) ⊢ 𝑇 wf

Γ ⊢ ∃𝑐.𝑇 wf
(wf-exists)

Γ ⊢ 𝑆 wf Γ ⊢ 𝐶 wf

Γ ⊢ 𝑆 ∧𝐶 wf
(wf-capt)

𝐶 ⊆ dom(Γ)
Γ ⊢ 𝐶 wf

(wf-cset)

Γ ⊢ ∗ wf (wf-star)

Fig. 6. Definition of well-formedness of System Capless.

Figure 6 defines the well-formedness of types, capture sets and capture bounds in System Capless.
It basically ensures that the capture sets only contain defined variables in the context.

Γ ⊢ ⊤ wf (wf-top)

𝑋 <: ⊤ ∈ Γ

Γ ⊢ 𝑋 wf
(wf-tvar)

Γ ⊢ 𝑇 wf (Γ, 𝑥 : 𝑇 ) ⊢ 𝑈 wf

Γ ⊢ ∀𝛼 (𝑥 : 𝑇 )𝑈 wf
(wf-fun)

(Γ, 𝑋 <: ⊤) ⊢ 𝑇 wf

Γ ⊢ ∀[𝑋 <: ⊤]𝑇 wf
(wf-tfun)

(Γ, 𝑐 ) ⊢ 𝑇 wf

Γ ⊢ ∀[𝑐 ]𝑇 wf
(wf-cfun)

Γ ⊢ 𝑇 wf

Γ ⊢ □𝑇 wf
(wf-boxed)

𝜅 = (𝜅1, · · · , 𝜅𝑛 ) ↦→ 𝑆 ∈ Θ
∀𝑇𝑖 , Γ ⊢ 𝑇𝑖 wf

Γ ⊢ 𝜅 [𝑇1, · · · ,𝑇𝑛 ] wf
(wf-applied)

Γ ⊢ 𝑆 wf Γ ⊢ 𝐶 wf

Γ ⊢ 𝑆 ∧𝐶 wf
(wf-capt)

∀𝜃 ∈ 𝐶.Γ ⊢ 𝜃 wf

Γ ⊢ 𝐶 wf
(wf-cset)

Γ ⊢ cap wf (wf-cap)

𝑥 : 𝑇 ∈ Γ

Γ ⊢ 𝑥 wf
(wf-var)

𝑥 : 𝑇 ∈ Γ

Γ ⊢ 𝑥∗ wf
(wf-reach)

Fig. 7. Definition of well-formedness of System Reacap.

Figure 7 shows the definition of the well-formedness judgement in System Reacap. It in most

parts matches that of System Capless and is thus not surprising. The primary difference is that

capture sets are allowed to include reach capabilities of defined variables and the universal capability

cap.
Figure 8 defines the well-formedness judgement for type definitions. ⊢ Θ wf ensures that all

type definitions in the context are well-formed. Later type definitions can refer to earlier ones.

Θ; Γ; (𝑋 𝜈1
1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢𝜈 𝑇 wf ensures that the body of a type definition is well-formed under

the variance 𝜈 , the existing type definitions Θ, a local type context Γ, and the parameter clause

(𝑋 𝜈1
1
, · · · , 𝑋 𝜈𝑛

𝑛 ). It extends type well-formedness by additionally ensuring that the variances of

parameters are consistent (as in (d-tvar)) and that the body does not have covariant occurrences

of caps.
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Well-Formedness of Type Definition Θ; Γ; (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢𝜈 𝑆 wf

Θ; Γ; (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢𝜈 ⊤ wf (d-top)

Γ ⊢ 𝐶 wf cap ∉ 𝐶 if 𝜈 = +
Θ; Γ; (𝑋 𝜈

1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢𝜈 𝑆 wf

Θ; Γ; (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢𝜈 𝑆 ∧𝐶 wf
(d-capt)

Γ ⊢ 𝑋 wf

Θ; Γ; (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢𝜈 𝑋 wf
(d-tvar)

Θ; Γ; ( · · · , 𝑋 𝜈𝑖
𝑖
, · · · ) ⊢𝜈𝑖 𝑋𝑖 wf (d-tparam)

Θ; Γ; (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢¬𝜈 𝑇 wf
Θ; Γ, 𝑥 : 𝑇 ; (𝑋 𝜈

1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢𝜈 𝑈 wf

Θ; Γ; (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢𝜈 ∀𝛼 (𝑥 : 𝑇 )𝑈 wf
(d-fun)

Θ; Γ, 𝑋 <: ⊤; (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢𝜈 𝑇 wf

Θ; Γ; (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢𝜈 ∀[𝑋 <: ⊤]𝑇 wf
(d-tfun)

Θ; Γ, 𝑐 ; (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢𝜈 𝑇 wf

Θ; Γ; (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢𝜈 ∀[𝑐 ]𝑇 wf
(d-cfun)

Θ; Γ; (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢𝜈 𝑇 wf

Θ; Γ; (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢𝜈 □𝑇 wf
(d-boxed)

𝜅 = (𝑌 𝜈′
1

1
, · · · , 𝑌 𝜈′𝑚

𝑛 ) ↦→ 𝑆 ∈ Θ
∀𝑌+

𝑖 ,Θ; Γ; (𝑋
𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢𝜈 𝑇𝑖 wf
∀𝑌 −

𝑖 ,Θ; Γ; (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢¬𝜈 𝑇𝑖 wf

Θ; Γ; (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢𝜈 𝜅 [𝑇1, · · · ,𝑇𝑚 ] wf
(d-applied)

Well-Formedness of Typedef Context ⊢ Θ wf

⊢ ∅ wf (ds-empty)
⊢ Θ wf

Θ; ∅; (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ⊢+ 𝑆 wf

⊢ Θ, 𝜅 = (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ↦→ 𝑆 wf
(ds-cons)

Fig. 8. Well-formedness of type definitions.

Syntax

Σ := Store

∅ empty

Σ, val𝑥 ↦→ 𝑣 val binding

Ψ := Evaluation Context

[ ] hole

let 𝑥 = Ψ in 𝑡 let

let ⟨𝑐, 𝑥 ⟩ = Ψ in 𝑡 ex. let

Reduction ⟨Σ | 𝑡 ⟩ −→ ⟨Σ′ | 𝑡 ′ ⟩

Σ(𝑥 ) = 𝜆 (𝑧 : 𝑇 )𝑡
⟨Σ | Ψ[𝑥 𝑦 ] ⟩ −→ ⟨Σ | Ψ[ [𝑧 := 𝑦 ]𝑡 ] ⟩ (apply)

Σ(𝑥 ) = 𝜆[𝑋 <: 𝑆 ]𝑡
⟨Σ | Ψ[𝑥 [𝑆 ′ ] ] ⟩ −→ ⟨Σ | Ψ[ [𝑋 := 𝑆 ′ ]𝑡 ] ⟩ (tapply)

Σ(𝑥 ) = 𝜆[𝑐 <: 𝐵 ]𝑡
⟨Σ | Ψ[𝑥 [𝐶 ] ] ⟩ −→ ⟨Σ | Ψ[ [𝑐 :=𝐶 ]𝑡 ] ⟩ (capply)

⟨Σ | Ψ[let 𝑥 = 𝑦 in 𝑡 ] ⟩ −→ ⟨Σ | Ψ[ [𝑥 := 𝑦 ]𝑡 ] ⟩ (rename)

⟨Σ | Ψ[let ⟨𝑐, 𝑥 ⟩ = ⟨𝐶, 𝑦⟩ in 𝑡 ] ⟩ −→ ⟨Σ | Ψ[ [𝑥 := 𝑦 ] [𝑐 :=𝐶 ]𝑡 ] ⟩
(rename-e)

⟨Σ | Ψ[let 𝑥 = 𝑣 in 𝑡 ] ⟩ −→ ⟨Σ, val𝑥 ↦→ 𝑣 | Ψ[𝑡 ] ⟩ (lift)

Fig. 9. Evaluation rules of System Capless. Changes from System CC<:□ [6] are highlighted.
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Syntax

𝑙𝑆 Label

𝑝,𝑞, 𝑟 := 𝑙𝑆 | 𝑥 General Variable

𝜃 := 𝑝 | 𝑐 Capture

𝑠, 𝑡, 𝑢 := scope𝑙𝑆 in 𝑡 | · · · Term

Ψ := scope𝑙𝑆 in Ψ | · · · Continuation Stack

Typing Γ ⊢ 𝑡 : 𝑇

{𝑙𝑆 }; Γ ⊢ 𝑙𝑆 : Break[𝑆 ] ∧ {𝑙𝑆 }
(label)

𝐶 ; Γ ⊢ 𝑡 : 𝑆
𝐶 ; Γ ⊢ scope𝑙𝑆 in 𝑡 : 𝑆

(scope)

The (var), (app), (tapp), (tapp), (invoke), and (pack) rules

now work on general variables 𝑝 .

Subcapturing Γ ⊢ 𝐶1 <: 𝐶2 now works on general

variables 𝑝

Reduction ⟨Σ | 𝑡 ⟩ −→ ⟨Σ′ | 𝑡 ′ ⟩

𝑙 is fresh

⟨Σ | Ψ[boundary[𝑆 ] as ⟨𝑐, 𝑥 ⟩ in 𝑡 ] ⟩ −→ ⟨Σ | Ψ[scope𝑙𝑆 in [𝑐 := {𝑙𝑆 } ] [𝑥 := 𝑙𝑆 ]𝑡 ] ⟩
(enter)

Ψ = Ψ1 [scope𝑙𝑆 in Ψ2 ]
⟨Σ | Ψ[𝑙𝑆 𝑝 ] ⟩ −→ ⟨Σ | Ψ1 [𝑝 ] ⟩

(breakout)

⟨Σ | Ψ[scope𝑙𝑆 in 𝑎] ⟩ −→ ⟨Σ | Ψ[𝑎] ⟩ (leave)

The (apply), (tapply), (capply), (rename), and (rename-e) rules now work on general variables 𝑝 .

Fig. 10. Extensions to dynamic rules of Capless.

A.2 Reduction Rules of System Capless
Figure 9 presents the reduction rules of System Capless. It is the same to those of System CC<:□

except for the addition of rules for capture application (capply) and existential unpacking (rename-

e).

A.3 Dynamic Rules of Scoped Capabilities
Figure 10 shows the extensions to the dynamic rules of System Capless. We introduce runtime

labels 𝑙𝑆 and scopes scope𝑙𝑆 in 𝑡 for the dynamic semantics of scoped capabilities. A label 𝑙𝑆 is a

unique runtime identifier of a boundary. (enter) reduces a boundary form by generating a fresh

label 𝑙 as the identifier of the boundary. The label also becomes the representation of the Break
capability. The boundary form is then replaced by a scope form scope𝑙𝑆 in 𝑡 , which delimits the

scope of the boundary. The scope can be left by returning an answer 𝑎 from it, as shown in the

(leave) rule. It can also be broken out by invoking the Break capability, as shown in the (break)

rule, which looks for the scope with the matching label 𝑙𝑆 in the evaluation context, and transfers

the control there. If a Break capability is invoked outside of its scope, the evaluation gets stuck.

B Discussions
B.1 An Example of Local Mutable State Storing Tracked Values
The following defines the concat function which takes a list of iterators and merges them into one

single iterator:

def concat[T](@use xs: List[Iterator[T]^]): Iterator[T]^{xs*} = new Iterator[T]:

var rest: List[Iterator[T]^{xs*}] = xs

var cur: Iterator[T]^{xs*} = Iterator.empty

def hasNext(): Boolean = cur.hasNext() || rest.exists(_.hasNext())

def next(): T =

if cur.hasNext() then

cur.next()
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else

cur = rest.head

rest = rest.tail

next()

It has the local mutable states rest and cur, both store impure values. In CT, the type of a mutable

state cannot contain any covariant mention of cap, as that provides a side channel for scoped

capabilities to escape [6]. Previously, the above programming pattern is not supported, as the best

type we can assign to the element of xs is Iterator[T]^{cap}, and storing a value of this type violates

the aforementioned restriction. Reach capabilities enable this pattern, since we have a precise name

xs* other than the top element cap for the effects of the elements in the list.

B.2 Theoretical Benefits of System Capless
B.2.1 Farewell, Boxes. System Capless drops boxes. In fact, thanks to precise capture tracking over

curried functions, boxes can be encoded in System Capless using term abstractions. Specifically, a

boxed term □𝑥 : □ 𝑆 ∧𝐶 can be encoded as a double type lambda abstraction 𝜆[𝑋 <: ⊤]𝜆[𝑋 <: ⊤] .𝑥 .
The inner lambda wraps the variable 𝑥 as a value with an empty use set: it can be typed as

{}; Γ ⊢ 𝜆[𝑋 <: ⊤] .𝑥 : (∀[𝑋 <: ⊤]𝑆 ∧𝐶) ∧𝐶 . Note that this value still has a non-empty capture

set. The outer lambda wraps it again to obtain a pure value: {}; Γ ⊢ 𝜆[𝑋 <: ⊤] .𝜆[𝑋 <: ⊤] .𝑥 :

(∀[𝑋 <: ⊤](∀[𝑋 <: ⊤]𝑆 ∧𝐶) ∧𝐶) ∧ {}. Then, the unbox term 𝐶′ � 𝑥 can be encoded as 𝑥 [⊤] [⊤].
For the simplicity of presentation, this term is not in MNF but can be normalized to that form

trivially. This way, boxing and unboxing behaves the same as in System Reacap boxing hides

the captures of a variable and unboxing reveals them. This is exactly how the translation system

translates boxes in System Reacap to System Capless. For more details, see Appendix D.1.

B.2.2 Justification of Escape Checking. System Capless provides insights into the unboxing restric-

tion for escape checking proposed in the original System CC<:□ [6], which has the restriction that

given a boxed value of type box T^{x1,...xn} it can be unboxed only if there is no cap in {x1,...,xn}.

This is for escape checking: a scoped capability should not be used outside its defining scope. Al-

though this restriction is sound and useful, it feels somewhat ad-hoc. System Capless provides
insights and a theoretical justification of this restriction. In short, cap means existentially quantified

capture sets, and unboxing a cap indicates using capabilities that are unknown in the current scope,

which should be rejected.

The following is a concrete example of an attempt to use a scoped capability outside its scope:

def withFile[T](path: String)(op: (f: File^) => T): T = ...

val leaked = withFile[box () ->{cap} String]("test.txt"): f =>

box () => f.read()

(unbox leaked)() // error: cannot unbox with `cap'

• withFile creates a scoped file capability given a path and allows the usage of the file inside

the scope of the function op. Afterwards the file is closed.

• In the leaked definition, the user tries to return a closure that reads the file, letting the scoped

capability escape.

• This program is rejected by capture checking, as leaked has the type box () ->{cap} String,

and therefore is forbidden to be unboxed.

Intuitively, the cap in the type means that there are certain capabilities widen to the top, which

happens typically when a capability escapes its defining scope.
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The equivalent of the previous example in System Capless is:

let ⟨𝑐, leaked⟩ = withFile[□ (() → String) ∧ {𝑐}] ("test.txt") (𝑓 ⇒ □ () ⇒ 𝑓 .read()) in
let 𝑧0 = {𝑐} � leaked in 𝑧0 ()

Here, let ⟨𝑐, 𝑥⟩ = · · · in · · · is the form for unpacking an existential quantification. Given a value

of the type ∃𝑐′ .𝑇 , this form binds the existential witness as 𝑐 and binds the value as 𝑥 where 𝑐′ is
replaced by 𝑐 in𝑇 . This form has the restriction that the existential witness 𝑐 cannot be appear in the

captured variables of the continuation term, since this behavior signifies the capabilities witnessed

by 𝑐 is used in the body and we need a way to account for the capturing of these capabilities. But

we have no ways to approximate widen 𝑐 since it is completely abstract. And the previous example

violates this restriction: the unbox operation {𝑐} � leaked adds 𝑐 to the captured variables of the

continuation term. This signfies that some unknown and probably out-of-scope capabilities are

used, justifying the rejection of the program.

B.3 Reach Refinement and Function Types
Surprisingly, reach refinement (r-fun) touches neither the domain nor the codomain of function

types. Let us first clarify why the codomain is not refined. Assume IO is a type in the context and

consider the example 𝑥 : (∀(𝑧 : IO∧ {cap})IO∧ {cap}) ∧𝐶 . If we were to refine the codomain and

type 𝑥 as (∀(𝑧 : IO ∧ {cap})IO ∧ {𝑥∗}) ∧𝐶 , we would implicitly treat the cap in the codomain as

existentially quantified at the same scope of 𝑥 , namely ∃𝑐𝑥∗ .∀(𝑧 : · · · )IO∧ {𝑐𝑥∗ }. This interpretation
is incorrect because that cap may depend on capabilities introduced by the argument 𝑧. A concrete

example is the identity function 𝜆(𝑧 : IO ∧ {cap})𝑧. A proper interpretation of 𝑥 ’s type is ∀(𝑧 :

· · · )∃𝑐. IO∧ {𝑐}. Hence, the cap in the codomain must not be replaced by 𝑥∗.
A similar reason applies to why the domain is unchanged. One may naturally consider refining

covariant cap occurring in a “double-flip” scenario. Consider an example
4 𝑥 : (𝑧1 : IO∧ {cap} ⇒

Unit) ⇒ (𝑧2 : IO ∧ {cap}) ⇒ Unit. It is tempting to refine the covariantly occurring cap in the

domain, yielding the type (𝑧1 : IO ∧ {𝑥∗} ⇒ Unit) ⇒ (𝑧2 : IO ∧ {cap}) ⇒ Unit. However, this
refinement is incorrect because that cap might correspond to capabilities introduced by a later

argument, such as 𝑧2. The function 𝜆(𝑧1 : · · · )𝜆(𝑧2 : · · · )𝑧1 𝑧2 is such an example.

C Proof of System Capless
C.1 Proof Devices

Store Typing ⊢ Σ :: Δ

⊢ ∅ :: ∅ (s-empty)

⊢ Σ :: Γ Γ ⊢ 𝑣 : 𝑇

⊢ Σ, val𝑥 ↦→ 𝑣 :: Γ, 𝑥 : 𝑇
(s-val)

Fig. 11. Store Typing

Figure 11 presents the store typing rules for System Capless.

D Proof of System Reacap and System Decap
D.1 System Decap
Figure 12 presents System Decap, a translation system that translates Reacap types to Capless
types.

4
Slightly abusing the notation, we write𝑇 ⇒ 𝑈 as a shorthand for (∀ (𝑥 : 𝑇 )𝑈 ) ∧ {cap} to improve readability.
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Capture Set Encoding ⟨𝐷, 𝜌, 𝜌∗ ⟩ ⊢ 𝐶 ⇓ 𝐶 ′

𝜏 ⊢ {} ⇓ {} (i-empty)

𝜏 ⊢ 𝐶1 ⇓ 𝐶 ′
1

𝜏 ⊢ 𝐶2 ⇓ 𝐶 ′
2

𝜏 ⊢ 𝐶1 ∪𝐶2 ⇓ 𝐶 ′
1
∪𝐶 ′

2

(i-union)

⟨𝐷, 𝜌, 𝜌∗ ⟩ ⊢ {𝑥 } ⇓ 𝜌 (𝑥 ) (i-var)

⟨𝐷, 𝜌, 𝜌∗ ⟩ ⊢ {cap} ⇓ 𝐷 (i-cap)

⟨𝐷, 𝜌, 𝜌∗ ⟩ ⊢ {𝑥∗} ⇓ 𝜌∗ (𝑥 ) (i-reach)

Type Encoding ⟨𝐷, 𝜌, 𝜌∗ ⟩ ⊢ 𝑇 ⇓ 𝑇 ′

𝜏 ⊢ 𝑆 ⇓ 𝑆 ′ 𝜏 ⊢ 𝐶 ⇓ 𝐶 ′

𝜏 ⊢ 𝑆 ∧𝐶 ⇓ 𝑆 ′ ∧𝐶 ′ (i-capt)

𝜏 ⊢ ⊤ ⇓ ⊤ (i-top)

𝜏 ⊢ 𝑋 ⇓ 𝑋 (i-tvar)

⟨𝐷, 𝜌, 𝜌∗ ⟩ ⊢ 𝑇 ⇓ 𝑇 ′

⟨𝐷, 𝜌, 𝜌∗ ⟩ ⊢ ∀[𝑋 <: ⊤]𝑇 ⇓ ∀[𝑋 <: ⊤]𝑇 ′ (i-tfun)

⟨𝐷, 𝜌, 𝜌∗ ⟩ ⊢ 𝑇 ⇓ 𝑇 ′

⟨𝐷, 𝜌, 𝜌∗ ⟩ ⊢ ∀[𝑐 ]𝑇 ⇓ ∀[𝑐 ]𝑇 ′ (i-cfun)

𝜏 ⊢ 𝑇 ⇓ 𝑆 ′ ∧𝐶 ′

𝜏 ⊢ □𝑇 ⇓ ∀[𝑋 <: ⊤] (∀[𝑋 <: ⊤]𝑆 ′ ∧𝐶 ′ ) ∧𝐶 ′ (i-boxed)

𝜅 = (𝑋 𝜈
1

1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ↦→ 𝑆 ∈ Θ
∀𝑋+

𝑖 , 𝜏 ⊢ 𝑇𝑖 ⇓ 𝑇 ′
𝑖 ∀𝑋 −

𝑖 ,𝑇
′
𝑖 =𝑇𝑖

𝜏 ⊢ [𝑋1 :=𝑇 ′
1
, · · · , 𝑋𝑛 :=𝑇 ′

𝑛 ]𝑆 ⇓ 𝑈

𝜏 ⊢ 𝜅 [𝑇1, · · · ,𝑇𝑛 ] ⇓ 𝑈
(i-applied)

⟨{𝑐𝑥∗ }, 𝜌, 𝜌∗ ⟩ ⊢ 𝑆 ⇓ 𝑆 ′ ⟨{∗}, 𝜌, 𝜌∗ ⟩ ⊢ 𝐶𝑎 ⇓ 𝐵𝑎

⟨{𝑐 }, 𝜌 [𝑥 ↦→ {𝑐𝑥 } ], 𝜌∗ [𝑥 ↦→ {𝑐𝑥∗} ]⟩ ⊢ 𝑈 ⇓ 𝑈 ′ ⟨𝐷, 𝜌, 𝜌∗ ⟩ ⊢ 𝐶𝑓 ⇓ 𝐶 ′
𝑓

𝐶 ′′
𝑓
=

{
𝐶 ′
𝑓
∪ {𝑐𝑥 } if 𝛼 = 𝜖,

𝐶 ′
𝑓
∪ {𝑐𝑥 , 𝑐𝑥∗} if 𝛼 = •.

⟨𝐷, 𝜌, 𝜌∗ ⟩ ⊢ (∀𝛼 (𝑥 : 𝑆 ∧𝐶𝑎 )𝑈 ) ∧𝐶𝑓 ⇓ ∀[𝑐𝑥 <: 𝐵𝑎 ]∀[𝑐𝑥∗ ] (∀ (𝑥 : 𝑆 ′ ∧ {𝑐𝑥 })∃𝑐.𝑈 ′ ) ∧𝐶 ′′
𝑓

(i-fun)

Fig. 12. Semantics of System Decap

Definition D.1 (Translation Context). A translation context, denoted as ⟨𝐶, 𝜌, 𝜌∗⟩ and by the

meta-variable 𝜏 , consists of the following components:

• a capture set 𝐷 in System Capless;
• a function 𝜌 which maps term variable names to capture sets in System Capless;
• and a function 𝜌∗ which maps term and type variable names to capture sets in System Capless.

Here, 𝐷 is called the interpretation. It assigns meanings to the caps in the source language. The

𝜌 function maps capabilities into their underlying capture sets in the target system. And similarly

for 𝜌∗, which maps reach capabilities.

Definition D.2 (Proper Translation Context). A translation context 𝜏 = ⟨𝐶, 𝜌, 𝜌∗⟩ is proper
under a source context Γ and a target context Δ, iff

• 𝐷 , the codomain of 𝜌 and 𝜌∗, are well-formed in Δ;
• dom(Δ) ⊆ dom(𝜌) and dom(Δ) ⊆ dom(𝜌∗);
• 𝜌∗ is a bijection;
• for any 𝑥 : 𝑆 ∧𝐶 ∈ Γ, we have ⟨𝜌 (𝑥), 𝜌, 𝜌∗⟩ ⊢ 𝐶 ⇓ 𝐶′

and Δ ⊢ 𝜌 (𝑥) <: 𝐶′
.

• for any 𝑥 : 𝑆 ∧𝐶 ∈ Γ, we have 𝑥 : 𝑆 ′ ∧𝜌 (𝑥) ∈ Γ where ⟨𝜌∗ (𝑥), 𝜌, 𝜌∗⟩ ⊢ 𝑆 ⇓ 𝑆 ′.
• for any 𝑋 <: 𝑆 ∈ Γ, we have 𝜌∗ (𝑋 ) = {𝑐𝑋 } and 𝑋 <: 𝑆 ′ ∈ Δ where ⟨{𝑐𝑋 }, 𝜌, 𝜌∗⟩ ⊢ 𝑆 ⇓ 𝑆 ′.
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D.2 Properties of System Decap
Theorem D.1 (Capture Set Translation is Complete). Given any ⟨𝐷, 𝜌, 𝜌∗⟩ and𝐶 , there exists 𝐼 such
that ⟨𝐷, 𝜌, 𝜌∗⟩ ⊢ 𝐶 ⇓ 𝐼 .

Proof. By induction on |𝐶 |, the size of 𝐶 .
Case |𝐶 | = 0. Then 𝐶 is empty. Conclude this by the (i-empty) rule.

Case |𝐶 | = 1. Then 𝐶 is a singleton. If 𝐶 = {cap}, set 𝐼 = 𝐷 and conclude this case by the (i-cap)

rule. If 𝐶 = {𝑥}, set 𝐼 = 𝜌 (𝑥) and this case is concluded by the (i-var) rule. Otherwise, we have

𝐶 = {𝑥∗} for some 𝑥 . This can be concluded by the (i-reach) rule.

Case |𝐶 | > 1. Then we can split 𝐶 = 𝐶1 ∪𝐶2 where |𝐶1 | < |𝐶 | and |𝐶2 | <: |𝐶 |. We conclude by

the IH and the (i-union) rule. □

Theorem D.2 (Capture Set Translation is Monotonic (I)). Given ⟨𝐷1, 𝜌, 𝜌
∗⟩ and ⟨𝐷2, 𝜌, 𝜌

∗⟩, two
proper translation contexts under Γ and Δ, if

(1) Δ ⊢ 𝐷1 <: 𝐷2,

(2) ⟨𝐷1, 𝜌, 𝜌
∗⟩ ⊢ 𝐶 ⇓ 𝐼1,

(3) and ⟨𝐷2, 𝜌, 𝜌
∗⟩ ⊢ 𝐶 ⇓ 𝐼2,

then Δ ⊢ 𝐼1 <: 𝐼2
Proof. By induction on the first translation derivation.

Case (i-empty). Then 𝐶 = 𝐼1 = {}. This case can be concluded immediately, since an empty

capture set is a subcapture of any capture set.

Case (i-union). Then𝐶 =𝐶1 ∪𝐶2, 𝐼1 = 𝐼11 ∪ 𝐼12, ⟨𝐷1, 𝜌, 𝜌
∗⟩ ⊢ 𝐶1 ⇓ 𝐼11, and ⟨𝐷1, 𝜌, 𝜌

∗⟩ ⊢ 𝐶2 ⇓ 𝐼12.

We can analyze the second translation derivation and conclude this case by applying the IH and

the (i-union) rule.

Case (i-var). Then 𝐶 = {𝑥}. We can show that 𝐼1 = 𝐼2 = 𝜌 (𝑥). We can conclude this case by the

reflexivity of the subcapturing relation.

Case (i-reach). Analogous to the (i-var) case.

Case (i-cap). Then𝐶 = {cap}. By analyzing the translation derivations, we can show that 𝐼1 = 𝐷1

and 𝐼2 = 𝐷2. So this case follows directly from the assumption. □

Theorem D.3 (Redundant Interpretation). Given any ⟨𝐷, 𝜌, 𝜌∗⟩ ⊢ 𝐶 ⇓ 𝐼 such that cap ∉ 𝐶 , we can

show that ⟨{}, 𝜌, 𝜌∗⟩ ⊢ 𝐶 ⇓ 𝐼 .

Proof. By induction on the translation derivation.

Case (i-empty), (i-var) and (i-reach). These cases follow directly from the premise.

Case (i-union). By the IHs and the same rule.

Case (i-cap). This case is absurd. □

Theorem D.4 (Capture Set Translation is Monotonic (II)). Given a proper translation context

⟨{}, 𝜌, 𝜌∗⟩ under contexts Γ and Δ, two capture sets Γ ⊢ 𝐶1 <: 𝐶2 such that cap ∉ 𝐶1 and 𝐶2, if

⟨{}, 𝜌, 𝜌∗⟩ ⊢ 𝐶1 ⇓ 𝐼1 and ⟨{}, 𝜌, 𝜌∗⟩ ⊢ 𝐶2 ⇓ 𝐼2, then Δ ⊢ 𝐼1 <: 𝐼2.

Proof. By induction on the subcapturing derivation.

Case (sc-trans). Then Γ ⊢ 𝐶1 <: 𝐶0 and Γ ⊢ 𝐶0 <: 𝐶2 for some 𝐶0. By Theorem D.1, we can show

that ⟨{}, 𝜌, 𝜌∗⟩ ⊢ 𝐶0 ⇓ 𝐼0 for some 𝐼0. We conclude this case by the IH and the (sc-trans) rule.

Case (sc-set). Then 𝐶1 =𝐶11 ∪𝐶12 Γ ⊢ 𝐶11 <: 𝐶2 and Γ ⊢ 𝐶12 <: 𝐶2. We conclude by the IH and

the (sc-set) rule.

Case (sc-var). Then 𝐶1 = {𝑥} and 𝑥 : 𝑆 ∧𝐶2 ∈ Γ. Then by Definition D.2, we can show that

Δ ⊢ 𝜌 (𝑥) <: 𝐼2 for some ⟨𝐷2, 𝜌, 𝜌
∗⟩ ⊢ 𝐶2 ⇓ 𝐼2. Since cap ∉ 𝐶2, we invoke Theorem D.3 to show that

⟨{}, 𝜌, 𝜌∗⟩ ⊢ 𝐶2 ⇓ 𝐼2. We can therefore conclude this case.
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Case (sc-elem). Then𝐶1 ⊆ 𝐶2. We can show that𝐷1 ⊆ 𝐷2, and conclude this case by the (sc-elem)

rule. □

Theorem D.5 (Capture Set Translation is Monotonic (III)). Given a proper translation context

⟨𝐷1, 𝜌, 𝜌
∗⟩ under contexts Γ and Δ, and Γ ⊢ 𝐶1 <: 𝐶2, then for any ⟨𝐷1, 𝜌, 𝜌

∗⟩ ⊢ 𝐶1 ⇓ 𝐼1, there exists

𝐷2 and 𝐼2 such that ⟨𝐷2, 𝜌, 𝜌
∗⟩ ⊢ 𝐶2 ⇓ 𝐼2, Δ ⊢ 𝐼1 <: 𝐼2, and 𝐷2 ⊆ 𝐼1.

Proof. By a case analysis on whether cap ∈ 𝐶2.

Case cap ∈ 𝐶2. Then set 𝐷2 = 𝐼1. By Theorem D.1, we can show that ⟨𝐷2, 𝜌, 𝜌
∗⟩ ⊢ 𝐶2 ⇓ 𝐼2 for

some 𝐼2. One can verify that 𝐷2 = 𝐼1 ⊆ 𝐼2. We can conclude this case by the (sc-elem) rule.

Case cap ∉ 𝐶2. Then we can show that cap ∉ 𝐶1 as well. By Theorem D.3 we can show that

⟨{}, 𝜌, 𝜌∗⟩ ⊢ 𝐶1 ⇓ 𝐼1. We then set 𝐷2 = {} and can show that ⟨𝐷2, 𝜌, 𝜌
∗⟩ ⊢ 𝐶2 ⇓ 𝐼2 for some

𝐼2 by Theorem D.1. Then, we invoke Theorem D.4 to show that Δ ⊢ 𝐼1 <: 𝐼2. This case can be

concluded. □

Theorem D.6 (Type Translation is Complete). Given any 𝜏 and 𝑇 , 𝜏 ⊢ 𝑇 ⇓ 𝑈 for some𝑈 .

Proof Sketch. By straightforward induction on the structure of 𝑇 . Use Theorem D.1 and the

IH to conclude each case. □

Theorem D.7 (Capture Translation is Injective). Given 𝜏 ⊢ 𝐶 ⇓ 𝐼1 and 𝜏 ⊢ 𝐶 ⇓ 𝐼2, we can show

that 𝐼1 = 𝐼2.

Proof. By straightforward induction on the translation derivation. □

Theorem D.8 (Type Translation is Injective). Given 𝜏 ⊢ 𝑇 ⇓ 𝑈1 and 𝜏 ⊢ 𝑇 ⇓ 𝑈2, we can show that

𝑈1 =𝑈2.

Proof Sketch. By induction on the derivation of 𝐷 ⊢ Γ ⇓ 𝑇𝑈1. Make use of the IH and

Theorem D.7 to conclude each case. □

Definition D.3 (Functional Notation for Translation). Given that the capture set and

type translation judgements are functional, that is, they are both injective and complete, as shown in

Theorem D.7, Theorem D.1, Theorem D.8, and Theorem D.6, we use {|·|}𝜏 to denote the output of the
translation derivation under the input 𝜏 , and ·, where · can either be a capture set of a type.

Sometimes we write simply {|·|}𝐷 if the 𝜌 and 𝜌∗ in the translation context are clear from the context.

Theorem D.9 (Capture Set Replacement). Given an already capturing type 𝑇 , 𝑇 ∧𝐶 replaces the

capture set of 𝑇 with 𝐶 . Specifically, it is defined as:

(𝑆 ∧𝐶0) ∧𝐶 := 𝑆 ∧𝐶

where 𝑇 = 𝑆 ∧𝐶0.

Theorem D.10 (Translation Preserves Subtyping). Given a proper translation context ⟨𝐷, 𝜌, 𝜌∗⟩
under contexts Γ and Δ, the subtyping derivation Γ ⊢ 𝑆1 <: 𝑆2 implies that given any well-typed

answer 𝑎 in System Capless J𝐶𝑎K𝐷1
;Δ ⊢ 𝑎 : J𝑆1 ∧𝐶K𝐷1

we have J𝐶𝑎K𝐷2
;Δ ⊢ 𝑎′ : J𝑆2 ∧𝐶K𝐷2

for some 𝐷2.

Proof. By induction on the subtyping derivation.

Case (top). Then 𝑆2 = ⊤. We set 𝐷2 = 𝐷1 and 𝑎
′ = 𝑎. We have J𝑆2 ∧𝐶K𝐷2 = ⊤∧J𝐶K𝐷2

and conclude

by the (sub) and (top) rules.

Case (refl). Then 𝑆1 = 𝑆2. We set 𝐷2 = 𝐷1 and 𝑎 = 𝑎′, and conclude this case immediately.

Case (trans). Then Γ ⊢ 𝑆1 <: 𝑆0 and Γ ⊢ 𝑆0 <: 𝑆2 for some 𝑆0. We conclude by repeated application

of the IHs.
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Case (boxed). Then 𝑆1 = □𝑅1
∧𝐶1 and 𝑆2 = □𝑅2

∧𝐶2 for some𝑇1 and𝑇2. We have J𝑆1K𝐷1 = ∀[𝑋 <:

⊤](∀[𝑋 <: ⊤]𝑅1 ∧𝐶1) ∧𝐶1. Given J𝐶𝑎K𝐷1
;Δ ⊢ 𝜆[𝑋 <: ⊤]𝜆[𝑋 <: ⊤]𝑎 : J𝑆1K𝐷1

, we invert the typing

derivation to show that J𝐶𝑖K𝐷1
; (Δ, 𝑋 <: ⊤, 𝑋 <: ⊤) ⊢ 𝑎 : J𝑅1 ∧𝐶2K𝐷1

for some 𝐶𝑖 . Then, we invoke

the IH to show that J𝐶𝑖K𝐷2
;Δ ⊢ 𝑎0 : J𝑅2 ∧𝐶2K𝐷2

for some 𝑎0 and 𝐷2. We set 𝑎′ = 𝜆[𝑋 <: ⊤]𝜆[𝑋 <:

⊤]𝑎0 and conclude this case by the (tabs) rule.

Case (fun). Then 𝑆1 = ∀𝛼1 (𝑧 : 𝑅1
∧ 𝐶1)𝑈1 and 𝑆2 = ∀𝛼2 (𝑧 : 𝑅2

∧ 𝐶2)𝑈2. In this case, we have

J𝑆1K𝐷1 = ∀[𝑐𝑧 <: J𝐶1K]∀[𝑐𝑧∗ ] (∀(𝑧 : J𝑅1K𝑐𝑧∗ ∧ {𝑐𝑧})∃𝑐. J𝑈1K𝑐 ). Given J𝐶𝑎K𝐷1
;Δ ⊢ 𝑎 : J𝑆1 ∧𝐶𝑓 K𝐷1

, we

set 𝑎′ to

𝜆[𝑐𝑧 <: J𝐶2K]𝜆[𝑐𝑧∗ ]𝜆(𝑧 : J𝑅2K𝑐𝑧∗ ∧ {𝑐𝑧})
let 𝑧𝑓 = 𝑎 in

let 𝑧𝑎 = 𝑎0 in

let 𝑧1 = 𝑧𝑓 [{𝑐𝑧}] in
let 𝑧2 = 𝑧1 [𝐷0] in
let ⟨𝑐3, 𝑧3⟩ = 𝑧2 𝑧𝑎 in

let 𝑧𝑜 = 𝑎′
0
in

⟨𝐷 ′
0
, 𝑧𝑜⟩

Here, 𝑎0 and 𝐷0 are the result of invoking the IH of the subtyping derivation between 𝑅2 and

𝑅1 with 𝑧 as the input. 𝑎′
0
and 𝐷 ′

0
is the result of invoking the IH of the subtyping derivation

between 𝑈1 and 𝑈2 with 𝑧3 and {𝑐3} as the input. Note that from Theorem D.5 we can show that

Δ ⊢ J𝐶2K <: J𝐶1K. By 𝛼1 ⪯ 𝛼2 and definition of the type translation, we can always find a 𝐶′
𝑓
such

that Δ ⊢ J𝐶𝑓 K𝐷1 <: J𝐶𝑓 K𝐷2
. We therefore conclude this case by repeated application of the (cabs),

(abs) and (sub) rules.

Case (tfun) and (cfun). Analogous to the (box) case.

Case (applied-p). Then 𝑆1 = 𝜅 [𝑇1, · · · ,𝑇𝑖 , · · · ,𝑇𝑛], 𝑆2 = 𝜅 [𝑇1, · · · ,𝑇 ′
𝑖 , · · · ,𝑇𝑛],𝜅 = (𝑋 𝜈1

1
, · · · , 𝑋+

𝑖 , · · · , 𝑋
𝜈𝑛
𝑛 ) ↦→

𝑆 ∈ Θ, and Γ ⊢ 𝑇𝑖 <: 𝑇 ′
𝑖 . By the IH, we can show that given any answer 𝑎 typed at J𝑇𝑖K𝐷1

there

exists a 𝐷2 and an answer 𝑎′ such that 𝑎′ can be typed at J𝑇 ′
𝑖 K

𝐷2
. By induction on the lexicographic

order of the size of Θ and the structure of 𝑆 . In each case, we can construct a way adapt the term.

Note that in the case of 𝑆 being an applied type, we continue the induction by decreasing the size

of Θ, since by the well-formedness of Θ, any type definitions only depend on ones coming before it.

Case (applied-m). Analogous to the (applied-p) case.

Case (dealias). There are two subcases of two different directions of the subtyping derivation.

Let us consider the first case, where 𝑆1 = 𝜅 [𝑇1, · · · ,𝑇𝑛] 𝑆2 = [𝑋1 := 𝑇1, · · · , 𝑋𝑛 := 𝑇𝑛]𝑆 , 𝜅 =

(𝑋 𝜈1
1
, · · · , 𝑋 𝜈𝑛

𝑛 ) ↦→ 𝑆 ∈ Θ, and ∀𝑋+
𝑖 , cap ∉ dcs(Γ,𝑇𝑖 ). Note that for any choice of 𝐷 , we have

J𝑆1K𝐷 = J[𝑋1 :=𝑇 ′
1
, · · · , 𝑋𝑛 :=𝑇 ′

𝑛]𝑆K𝐷 where ∀𝑋+
𝑖 ,𝑇

′
𝑖 = J𝑇𝑖K𝐷 and ∀𝑋 −

𝑗 ,𝑇
′
𝑗 = 𝑇𝑗 . For any choice of

𝐷 , we have J𝑆2K𝐷 = J[𝑋1 :=𝑇1, · · · , 𝑋𝑛 :=𝑇𝑛]𝑆K𝐷 . Note that since ∀𝑋+
𝑖 , cap ∉ dcs(Γ,𝑇𝑖 ), the value

of 𝑇 ′
𝑖 is irrelavant to the choice of 𝐷 , and we can therefore show that J𝑆1K𝐷 = J𝑆2K𝐷 . This case is

concluded by setting 𝐷2 = 𝐷1 and 𝑎
′ = 𝑎 given any 𝑎 that can be typed at J𝑆1K𝐷1

. The other subcase

is analogous. □

D.3 The Main Theorem
Theorem 5.3 (Translation Preserves Typing). Let 𝜏 = ⟨𝐷, 𝜌, 𝜌∗⟩ be a proper translation context

under type contexts Γ and Δ, and 𝐶; Γ ⊢ 𝑡 : 𝑇 be a typing derivation in System Reacap. Then, if 𝑡 is
either of the application form 𝑥 𝑦 or the let-binding form let 𝑧 = 𝑠 in 𝑢, there exists a term 𝑡 ′ in System
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Capless such that J𝐶K𝐷 ′
;Δ ⊢ 𝑡 ′ : ∃𝑐. J𝑇 K{𝑐 } for some 𝐷 ′

; otherwise, there exists a term 𝑡 ′ in System

Capless such that J𝐶K𝐷 ′
;Δ ⊢ 𝑡 ′ : J𝑇 K𝐷 ′

for some 𝐷 ′
, and 𝑡 ′ is an answer when 𝑡 is an answer.

Proof of Theorem 5.3. By induction on the typing derivation 𝐶 ; Γ ⊢ 𝑡 : 𝑇 .
Case (var). Then the typing derivation is of the form {𝑥}; Γ ⊢ 𝑥 : 𝑆 ′ ∧ {𝑥} where {𝑥∗} ⊢ 𝑆 { 𝑆 ′.

By Definition D.2, we know that 𝑥 : J𝑆K𝜌∗ (𝑥 ) ∧ 𝜌 (𝑥) ∈ Δ. We can show that J𝑆 ′K𝜌∗ (𝑥 ) = J𝑆K𝜌∗ (𝑥 )
.

Since 𝑥 is an answer, we need to choose a 𝑡 ′ that is an answer. We set 𝐷 ′ = 𝜌∗ (𝑥) and 𝑡 ′ = 𝑥 and

conclude this case.

Case (sub). Then 𝐶0; Γ ⊢ 𝑎 : 𝑇0, Γ ⊢ 𝐶0 <: 𝐶 and Γ ⊢ 𝑇0 <: 𝑆 . By the IH, we can show that

J𝐶0K𝐷0
;Δ ⊢ 𝑎′

0
: J𝑇0K𝐷0

for some capture set 𝐷0 and answer 𝑎′
0
. We then conclude this case by

Theorem D.10 and Theorem D.2.

Case (box). Then the typing derivation is of the form {}; Γ ⊢ □𝑥0 : □ (𝑆0 ∧𝐶0) where we have
𝐶0; Γ ⊢ 𝑥0 : 𝑆0 ∧𝐶0. By the IH, we can show that J𝐶0K𝐷0

;Δ ⊢ 𝑎′
0
: J𝑆0 ∧𝐶0K𝐷0

for some 𝐷0 and 𝑎
′
0
. We

let 𝐷 ′ = 𝐷0 and construct the following 𝑡 ′:

𝜆[𝑋 <: ⊤]𝜆[𝑋 <: ⊤]𝑎′
0
,

which is also an answer. We conclude this case by repeated application of the (tabs) rule.

Case (unbox). Then the typing derivation is of the form 𝐶0; Γ ⊢ 𝐶 � 𝑥0 : 𝑆0
∧𝐶0 and we have

𝐶0; Γ ⊢ 𝑥0 : □ 𝑆0
∧𝐶0. By analyzing the typing derivation, we can show that {}; Γ ⊢ 𝑥0 : □ 𝑆0

∧𝐶0. By

the IH, we have {}; Γ ⊢ 𝑎′
0
: ∀[𝑋 <: ⊤](∀[𝑋 <: ⊤]𝑆 ′

0

∧𝐶′
0
) ∧𝐶′

0
where 𝐶′

0
= J𝐶0K𝐷0

and 𝑆 ′
0
= J𝑆0K𝐷0

for some 𝐷0. We set 𝐷 ′ = 𝐷0 and construct the following 𝑡 ′:

let 𝑧0 = 𝑎′
0
in

let 𝑧1 = 𝑧0 [⊤] in
𝑧1 [⊤]

We can show that 𝐶′
0
;Δ ⊢ 𝑡 ′ : 𝑆 ′

0

∧𝐶′
0
using the (let) and (tapp) rules, and therefore conclude this

case.

Case (abs). Then 𝑡 = 𝜆𝛼 (𝑥 : 𝑅0
∧𝐶0)𝑡0, 𝑇 = (∀𝛼 (𝑥 : 𝑈0)𝑇0) ∧𝐶𝑓 and 𝐶𝑓 ; (Γ, 𝑥 : 𝑈0) ⊢ 𝑡0 : 𝑇0. Let

Δ′ = (Δ, 𝑐𝑥 <: J𝑅0K, 𝑐𝑥∗ <: CapSet). By the IH, we can show that one of the following holds:

(i) J𝐶𝑓 K𝐷0
;Δ′ ⊢ 𝑡 ′

0
: J𝑇0K𝐷0

for some 𝐷0 and 𝑡
′
0
,

(ii) J𝐶𝑓 K𝐷0
;Δ′ ⊢ 𝑡 ′

0
: ∃𝑐. J𝑇0K{𝑐 } for some 𝐷0 and 𝑡

′
0
.

If the first case holds, we can construct the following 𝑡 ′:

𝜆[𝑐𝑥 <: J𝑅0K]𝜆[𝑐𝑥∗ ]𝜆(𝑥 : J𝑅0K𝑐𝑥∗ ∧ {𝑐𝑥 })
let 𝑧𝑟 = 𝑡 ′

0
in

⟨𝐷0, 𝑧𝑟 ⟩

Otherwise, we can construct the following 𝑡 ′:

𝜆[𝑐𝑥 <: J𝑅0K]𝜆[𝑐𝑥∗ ]𝜆(𝑥 : J𝑅0K𝑐𝑥∗ ∧ {𝑐𝑥 })
𝑡 ′
0

In both cases, 𝑡 ′ is an answer. We conclude by applying the (cabs), (abs) and (let) rules.

Case (app). Then 𝑡 = 𝑥 𝑦, 𝐶; Γ ⊢ 𝑥 : (∀𝛼 (𝑧 : 𝑈1)𝑈2) ∧𝐶𝑓 , 𝑦 : 𝑆𝑦
∧𝐷𝑦 ∈ Γ, Γ ⊢ 𝑆𝑦

∧ {𝑦} <: 𝑈1, and

𝑇 = [𝑧∗ :=+ dcs(Γ, 𝑆𝑦)] [𝑧 := 𝑦]𝑈2. We first analyze the typing derivation of 𝑥 and show that {𝑥}; Γ ⊢
𝑥 : (∀𝛼 (𝑧 : 𝑈1)𝑈2) ∧ {𝑥}, By the IH, we can show that J{𝑥}K𝐷0

;Δ ⊢ 𝑎𝑥 : J(∀𝛼 (𝑧 : 𝑈1)𝑈2) ∧ {𝑥}K𝐷0
for
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some 𝐷0 and 𝑎𝑥 . By Theorem D.10, we can show that J{𝑦}K𝐷1
;Δ ⊢ 𝑎𝑦 : J𝑈1K𝐷1

for some 𝐷1. We

construct the following 𝑡 ′:

let 𝑧𝑥 = 𝑎𝑥 in

let 𝑧𝑦 = 𝑎𝑦 in

let 𝑧1 = 𝑧𝑥 [𝜌 (𝑦)] in
let 𝑧2 = 𝑧1 [𝐷1] in
𝑧2 𝑧𝑦

Then we can conclude this case by the (app), (capp) and (let) rules. Note that, if 𝛼 = •, the use set
when typing 𝑡 ′ will include 𝐷1.

Case (tabs) and (cabs). Analogous to the (abs) case.

Case (tapp) and (capp). Analogous to the (app) case.

Case (let). Then 𝑡 = let 𝑧 = 𝑠1 in 𝑠2, 𝐶; Γ ⊢ 𝑠1 : 𝑇1, 𝐶; (Γ, 𝑥 : 𝑇1) ⊢ 𝑠2 : 𝑇2. By applying the IH on

the first typing derivation, we can show that one of the following holds:

(i) J𝐶K𝐷1
;Δ ⊢ 𝑡 ′

1
: J𝑇1K𝐷1

for some 𝐷1 and 𝑡
′
1
,

(ii) J𝐶K𝐷1
;Δ ⊢ 𝑡 ′

1
: ∃𝑐. J𝑇1K{𝑐 } for some 𝐷1 and 𝑡

′
1
.

If the first case holds, we invoke the IH on the second typing derivation to show that J𝐶K𝐷2
;Δ, 𝑧 : J𝑇1K𝐷1 ⊢

𝑡 ′
2
: J𝑇2K𝐷2

for some 𝐷2 and 𝑡
′
2
. We construct the following 𝑡 ′:

let 𝑧1 = 𝑡 ′
1
in

𝑡 ′
2

and conclude this case by the (let) rule. If the second case holds, we invoke the IH on the second

typing derivation to show that J𝐶K𝐷2
;Δ, 𝑐𝑧 : CapSet, 𝑧 : J𝑇1K𝑐𝑧 ⊢ 𝑡 ′

2
: J𝑇2K𝐷2

for some 𝐷2 and 𝑡
′
2
, and

construct the following 𝑡 ′:

let ⟨𝑐𝑧, 𝑧1⟩ = 𝑡 ′
1
in

𝑡 ′
2

Then, this case can be concluded by the (let-e) rule.

□
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