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Representation Learning on Graphs

» Goal: efficient feature learning for machine learning on graphs

node 2 vec

S ]

fRE x {01}V - RF

R F' < F
O Node embeddings

* In reality, labels are not always available to models, which calls
for training GNN in a self-supervised manner.
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Contrastive Learning for GRL

* Node embedding approaches

» Pioneering work of node embedding follows a contrastive framework
originated in the skip-gram model.

* For example, node2vec first samples short random walks and then
enforces neighboring nodes on the same walk to share similar
embeddings by contrasting them with other nodes.

* GNN-based approaches

« GraphSAGE connects reconstruction objectives to GNN models, which
excessively relies on the preset graph proximity matrix.

DGl firstly revitalizes InfoMax principle in the graph domain, which
maximizes mutual information between node representations and
global summary vectors.
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Model lllustration

G=(X,A)
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Contrastive Learning Across Views

» We first generate two correlated graph views by randomly
performing corruption.

* Then, we train the model using a contrastive loss to maximize
the agreement between node embeddings in these two views.

« Rather than contrasting node-level embeddings to global ones, we
primarily focus on contrasting embeddings at the node level.
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Hybrid Graph View Generation

» Appropriately choosing negative samples is important for
InfoMax-based methods.

« We corrupt the original graph at both structure and attribute
levels to construct diverse node contexts.

« Removing edges (RE): randomly remove a portion of edges in
the original graph.
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« Masking node features (MF): randomly mask a fraction of
dimensions with zeros in node features.
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Experiment Setup

» Datasets
Dataset Type #Nodes #Edges #Features #(Classes
Cora Transductive 2,708 5,429 1,433 7
Citeseer Transductive 3,327 4,732 3,703 6
Pubmed Transductive 19,717 44,338 500 3
DBLP  Transductive 17,716 105,734 1,639 4
Reddit Inductive 231,443 11,606,919 602 41
: 56,944 121
PPI Inductive (24 graphs) 818,716 50 (multilabel)
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Experiment Setup (cont.)

» Baselines:
 Traditional methods DeepWalk and node2vec

* GNN-based methods GAE, VGAE, GraphSAGE, and DGl

« Representative semi-supervised methods
» Transductive: GCN and SGC
* Inductive: FastGCN and GaAN-mean
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Transductive Node Classification

Method Training Data Cora Citeseer  Pubmed DBLP
Raw features X 64.8 64.6 84.8 71.6
node2vec A 74.8 52.3 80.3 78.8
DeepWalk A 75.7 50.95 80.5 75.9
DeepWalk + features X, A 73.1 47.6 83.7 78.1
GAE X, A 76.9 60.6 82.9 81.2
VGAE X, A 78.9 61.2 83.0 81.7
DGI X, A 82.6+04  68.840.7  86.0+0.1 83.2+0.1
GRACE X, A 83.34+0.4 72.14+0.5 86.74+0.1 84.2+0.1
SGC X, AY 80.6 69.1 84.8 81.7
GCN X, AY 82.8 72.0 84.9 82.7
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Inductive Node Classification

Method Training Data  Reddit PPI
Raw features X 58.9 42.2
DeepWalk A 32.4 —
DeepWalk + features X, A 69.1 —
GraphSAGE-GCN X, A 90.8 46.5
GraphSAGE-mean X, A 89.7 48.6
GraphSAGE-LSTM X, A 90.7 48.2
GraphSAGE-pool X, A 89.2 50.2
DGI X, A 94.0+0.1 63.8+0.2
GRACE X, A 94.2+0.0 66.1+0.1
Fast GCN X, AY 93.7 —
GaAN-mean X, AY 95.84+0.1 96.940.2
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Robustness to Sparse Features

« Experiments with randomly contaminating the training data by
masking a certain portion of the node features to zeros.

« We vary the contamination rate of node features from 0.5 to0 0.9 on
four citation networks.
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Wrapping Up

1.

We have developed a novel graph contrastive representation
learning framework based on maximizing the agreement at
the node level.

GRACE learns representations by first generating graph views
using a hybrid scheme, removing edges and masking node
features, and then applying a contrastive loss to maximize the
agreement of node embeddings in these two views.

Experimental results demonstrate that GRACE can outperform
existing state-of-the-art methods by large margins and even
surpass supervised counterparts on transductive tasks.
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