
Implementing Path-Dependent GADT
Reasoning for Scala 3

Scala Symposium ’21

Yichen Xu
linyxus@bupt.edu.cn

Joint Work with Aleksander Boruch-Gruszecki and Lionel Parreaux

Beijing University of Posts and Telecommunications
† Work done during the internship at LAMP, EPFL



Outline

1 Preamble

2 Path-Dependent GADT Reasoning

3 Discussion

4 Conclusion

1



Preamble



Generalized Algebriac Data Types (GADTs)

What are GADTs. GADTs enables the encapsulation of
additional type information in ADTs, along with the ability of
utilizing the encapsulated type information when performing
pattern matching.

Example. Definition of type-safe embedded algebraic
expression GADT.

enum Expr[A]:

case LitInt(i: Int) extends Expr[Int]

case Add(e1: Expr[Int], e2: Expr[Int]) extends Expr[Int]

case Tuple[X, Y](x: Expr[X], y: Expr[Y]) extends Expr[(X, Y)]

2



The GADT Example

enum Expr[A]:

case LitInt(i: Int) extends Expr[Int]

case Add(e1: Expr[Int], e2: Expr[Int]) extends Expr[Int]

case Tuple[X, Y](x: Expr[X], y: Expr[Y]) extends Expr[(X, Y)]

• Additional GADT type information: the LitInt

constructor asserts that the created data is an Expr[Int].

• This ensures stronger type safety by disallowing
expressions like Add(Tuple(LitInt(1), LitInt(2)),

LitInt(3)).

3



The GADT Example (Cont.)

def eval[T](e: Expr[T]): T = e match

case LitInt(i) => i

case Add(e1, e2) => eval(e1) + eval(e2)

case Tuple(x, y) => (eval(x), eval(y))

• The other part of GADT’s power: utilizing the additional
type information in the pattern matching.

• The LitInt case: GADT constraint Int= T allows the
compilation of the code.

• GADT enables existential types.
The Tuple case: there exists α,β, such that (α,β) = T .

4



Implementing GADT in Scala is Non-Trivial

• Scala has a sophisticated class system: possible to define
open GADT with complex inheritence hierarchy.

• Scala’s type system has advanced features: e.g. variance
and subtyping.

5



Pitfalls of GADT Reasoning in Scala

trait Func[-A, +B]

class Identity[X] extends Func[X, X]

def foo[A, B](func: Func[A, B]) = func match

case _: Identity[c] =>

(??? : A) : B

// error. A <: c <: B does NOT hold here.

Counter-example: new Identity[X] & Func[Nothing, Any].

6



Essence of Scala GADT Reasoning

• The essence of GADT in Scala: extracting necessary
constraints from cohabitation.

• Cohabitation. For any types S and T ,

S and T are cohabitated ⇔ ∃x ,x : S & T

7



Essence of Scala GADT Reasoning (Cont.)

def eval[T](e: Expr[T]): T = e match

case LitInt(i) => i

case Add(e1, e2) => eval(e1) + eval(e2)

case Tuple(x, y) => (eval(x), eval(y))

• The LitInt case: e : Expr[T ] & LitInt

⇒ e : Expr[T ] & Expr[Int]

⇒ Expr[T ] and Expr[Int] are cohabited

• From the cohabitation, we extract the GADT constriant
T = Int.

8



Current Status of Scala GADT

• Dotty1 has brought better GADT reasoning to Scala [2].

• However, existing implementation only support GADT
reasoning for type parameters, lacking GADT reasoning
for path-dependent types: we can have GADT constraints
for a type parameter T , but not a path-dependent type p .T .

1Also known as the Scala 3 compiler.

9



Path-Dependent GADT Reasoning

The missing of path-dependent GADT reasoning is
unfortunate for two reasons:

• Current understanding of GADT reasoning in Scala is
based upon the theory of path-dependent types [2, 3].

• Path-dependent types is a general and powerful way of
abstracting over types in Scala. Leaving out GADT
reasoning for them makes the implementation patently
incomplete.

10



Path-Dependent GADT Reasoning (Cont.)

An example that relies on both type parameter and
path-dependent GADT to compile.

type sized[X, N] = X & { type Size = N }

trait Expr[+X] { type Size }

case class IntLit(x: Int) extends Expr[Int] { type Size = 1 }

case class Add[N1 <: Int, N2 <: Int](

e1: Expr[Int] sized N1,

e2: Expr[Int] sized N2

) extends Expr[Int] { type Size = N1 + N2 + 1 }

def swap[X](tree: Expr[X]): Expr[X] sized tree.Size =

tree match

case IntLit(x) => IntLit(x)

case Add(l, r) => Add(swap(r), swap(l))

11



Path-Dependent GADT Reasoning



Use Cases

• Derive constraints between type members.

• Constrain path-dependent types.

• Type members as subtyping proofs.

12



Use Case I: Derive Constraints Between Type Members

trait Tag { type S; type U = S; type T >: U }

def f(e: { type S = Int; type T }): e.T = e match

case e1: Tag => 0

• Desired behavior: deriving constraints between the type
members from the scrutinee and pattern.

• The code relies on the constraint Int <: e .T to compile.

13



Use Case II: Constrain path-dependent types

trait Tag { type T }

def f(p: Tag, m: Expr[p.T]): p.T = m match

case IntLit(i) => i

• The (p: Tag) parameter is a type tag, which use a
path-dependent type to mimic a type parameter.

• Expected behavior: constraining the path-dependent type
p .T with GADT constraint Int <: p .T .

14



Use Case III: Type Members as Subtyping Proofs

trait Tag { type T >: IntExpr }

def f[X](e: { type T <: Expr[X] }): X = e match

case _: Tag => 0

• In the case body, e .T :> IntExpr <: Expr[X].

• Type members from habitated types can be viewed as
proof of subtyping between its lower and upper bounds:
IntExpr <: Expr[X ].

• From the subtyping relation, derive the GADT constraint
Int <: X .

15



Implementation

• We extensively reuse the existing GADT reasoning
framework in our implementation.

• Data structures for constraints:
• Previous implementation: only recognizes type parameter

symbols for constraint management, which is not sufficient
for path-dependent types.

• Our implementation: handle the path and type member
symbols collectively to support path-dependent types.

• Type Registration: extend the type registration scheme to
properly register path-dependent types.

• Refer to Section 3 and 4 of our paper for details.

16



Experimental Evaluation

• Functional tests. Our branch is able to pass all of the 8345
unit tests, suggesting that our implementation is
conservative.

• Benchmarks. We run the 10 test suites in the Dotty
benchmark and inspect the changes of running time before
and after our work.

17



Benchmarking Performance

dotty stdlib scalap re2 quote-1 quote-1k quote-string i1687 empty-class empty-object
0.9

0.95

1

1.05

1.1

R
u

nn
in

g
T

im
e

(r
el

at
iv

e)

Figure 1: Relative running time before and after our work.

18



Discussion



Relation with Theory

trait IntTag { type T = Int }

def f[A](e: { type T <: A }): A = e match

case _: IntTag => 0

• Our work enables the extraction of constraint Int <: A .

• Although it is not possible to do this with Dotty’s current
GADT implementation, such reasoning already presents in
Dotty’s formal system, DOT [1].

• Therefore, our work brings the compiler closer to its
formal side.

19



Conclusion



Future Work

• Unifying the implementation of GADT reasoning for both
type parameters and type members.

• Recording GADT constraints for concrete types when we
can not break down the types further to extract GADT
constraints.

• GADT constraint inference for a wider range of
cohabitation.

20



Concluding Remarks

• As a missing piece of puzzle, path-dependent GADT
reasoning is not supported in Dotty’s current
implementation of GADT reasoning, but it will benefit
real-world use cases and bring the compiler closer to its
formalism.

• We propose the implementation of path-dependent GADT
reasoning. Empirical evaluation shows the efficiency of our
implementation, though there is space for improvements.

• We also give a description of the GADT reasoning
framework in Dotty to get those who are interested in the
technical details of Dotty familiar with related data
structures and program logic, and facilitate future
development.

21



Thank You

• Thank you for listening!

• Slides available at bit.ly/PDGADT-Slides.

Figure 2: Scan me to get the slides.

22

https://bit.ly/PDGADT-Slides


References i

Nada Amin, Samuel Grütter, Martin Odersky, Tiark Rompf,
and Sandro Stucki. The essence of dependent object
types. In A List of Successes That Can Change the World,
2016.

Lionel Parreaux, Aleksander Boruch-Gruszecki, and
Paolo G. Giarrusso. Towards improved gadt reasoning in
scala. In Proceedings of the Tenth ACM SIGPLAN Symposium
on Scala, Scala ’19, page 12–16, New York, NY, USA, 2019.
Association for Computing Machinery.

Radosław Waśko. Formal foundations for gadts in scala.
2020.

23


	Preamble
	Path-Dependent GADT Reasoning
	Discussion
	Conclusion

