Implementing Path-Dependent GADT Reasoning
for Scala 3

Yichen Xu Aleksander Boruch-Gruszecki Lionel Parreaux
Beijing University of Posts and Ecole polytechnique fédérale de Hong Kong University of Science and
Telecommunications Lausanne Technology
China Switzerland China
linyxus@bupt.edu.cn aleksander.boruch- parreaux@cse.ust.hk

gruszecki@epfl.ch

Abstract

Generalized Algebraic Data Types (GADT) are a popular pro-
gramming language feature allowing advanced type-level
properties to be encoded in the data types of a program.
While Scala does not have direct support for them, GADT
definitions can be encoded through Scala class hierarchies.
Moreover, the Scala 3 compiler recently augmented its pat-
tern matching capabilities to reason about such class hierar-
chies, making GADT-based programming practical in Scala.
However, the current implementation can only reason about
type parameters, but Scala’s type system also features single-
ton types and abstract type members (collectively known as
path-dependent types), about which GADT-style reasoning
is also useful and important. In this paper, we show how
we extended the existing constraint-based GADT reason-
ing of the Scala 3 compiler to also consider path-dependent
types, making Scala’s support for GADT programming more
complete and bringing Scala closer to its formal foundations.

CCS Concepts: » Software and its engineering — Data
types and structures; Classes and objects.

Keywords: Generalized algebraic data types, Type members,
Path-dependent types, Singleton types, Scala

ACM Reference Format:

Yichen Xu, Aleksander Boruch-Gruszecki, and Lionel Parreaux.
2021. Implementing Path-Dependent GADT Reasoning for Scala 3.
In Proceedings of the 12th ACM SIGPLAN International Scala Sympo-
sium (SCALA °21), October 17, 2021, Chicago, IL, USA. ACM, New
York, NY, USA, 11 pages. https://doi.org/10.1145/3486610.3486892

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SCALA °21, October 17, 2021, Chicago, IL, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-9113-9/21/10...$15.00
https://doi.org/10.1145/3486610.3486892

1 Introduction

Scala supports both flexible object-oriented class hierarchies
and class-based pattern matching on them. This combination
of features naturally gives rise to tricky typing problems, be-
cause pattern matching can uncover new typing information
at runtime from the shapes of deconstructed data. Consider
the definitions of the Expr base class and its children (List-
ing 1), and how the eval function (Listing 1b) performs pat-
tern matching on Expr instances. These definitions will be
explained in detail in the next section, but for now it suffices
to remark that something non-trivial happens when type
checking eval: in the IntLit case, we return an Int while a
T is expected by the function signature. The Scala compiler
has to reason that T is compatible with Int in this specific
pattern matching branch.

sealed abstract class Expr[+A]
case class IntLit(i: Int) extends Expr[Int]
case class Add(l: Expr[Int], r: Expr[Int]) extends Expr[Int]
case class Pair[B, CJ(a: Expr[B], b: Expr[CI])

extends Expr[(B, C)]

(a) Scala Definition of the Expr GADT.
def eval[T](e: Expr[T]): T = e match
case IntLit(i) =>1

case Add(el, e2) => eval(el) + eval(e2)
case Pair(a, b) => (eval(a), eval(b))

(b) The eval function pattern matching on Expr.

Listing 1. A Scala GADT Example.

This is essentially the problem of GADT reasoning, which
also arises in functional languages with support for general-
ized algebraic data types (GADTs). However, it is not straight-
forward to apply existing GADT reasoning approaches to
Scala, because of its support for advanced type system fea-
tures based on subtyping. And while Dotty (the new Scala
3 compiler) already integrates proper GADT reasoning for
type parameters, it lacks supports for other aspects of Scala’s
type system, most notably singleton types and abstract type
members, collectively known as path-dependent types.

In this paper, we propose an implementation of GADT
reasoning for path-dependent types in Dotty. We lay out the
current status of GADTs in Dotty, present our implementa-
tion for path-dependent GADTs, briefly discuss its soundness,
and suggest future work in the same vein. It turns out that


https://doi.org/10.1145/3486610.3486892
https://doi.org/10.1145/3486610.3486892

SCALA ’21, October 17, 2021, Chicago, IL, USA

we can reuse much of the existing logic for type-parameter
GADT reasoning in our implementation. The specific contri-
bution of this paper are the following:

e We show how to implement relatively efficient path-
dependent GADT reasoning in Dotty and describe
Dotty’s GADT reasoning framework.

e We explain the interplay between path-dependent types
and GADT reasoning, practically and theoretically.

2 Background

Functional programming languages traditionally define the
data structures programs operate on through Algebraic Data
Types (ADTs), which are essentially named sums of prod-
uct types — i.e., an ADT is a type constructor with a set
of possible data constructors, where each data constructor
contains its own fields. Generalized Algebraic Data Types
(GADTs) [Xi et al. 2003] extend the notion of plain ADTs
by allowing each data constructor to refine the type of the
data type being defined, thereby encapsulating additional
information about the types involved in the construction
of this data. This extra type information is then retrieved
during pattern matching, which requires special reasoning
capabilities from the type checker.

Scala is an object-oriented programming language at heart,
whereby data types are defined through classes, rather than
(G)ADTs. Thankfully, Scala’s expressive class definitions can
be used to model GADTs.! Listing 1a shows how to define
a typical GADT in Scala: an Expr data type representing
typed expressions. Expr is parameterized by some type A
and defined as one of three constructors: integer literals and
addition expressions, which only make sense when A is Int,
and pairs, which similarly restrict A to the case where it is a
tuple of two other types B and C. Since the types B and C
do not appear in the parent Expr type, we say that they are
existentially quantified — if we know that an Expr[T] value is
constructed with the Pair constructor, then there exist some
types a and b such that T = (a, b). The use of a plus ‘+’ sign
in front of A additionally specifies that Expr is covariant in
this type parameter, meaning that Expr[A] is a subtype of
Expr[B] if A is itself a subtype of B.

Modelling GADTs through object-oriented class hierar-
chies is not enough to make them as useful as GADTs in
languages where they are supported natively. One also needs
a pattern matching construct which can leverage the typing

n fact, Scala classes can model a generalization of GADTs, allowing the
encoding of not only closed single-level data types, but also open and multi-
level ones as well. Open data types are those for which it is possible to
define new constructors later, in other parts of a program, and multi-level
data types are those where the data constructors are organized as the leaves
in a nested hierarchy of type constructors related by subtyping. Another
quality-of-life improvement of Scala’s approach to GADTs is that each data
constructor has its own associated type constructor; for example, Pair[S, T]
defined in Listing 1a is a type on its own, a subtype of Expr[(S, T)].

Yichen Xu, Aleksander Boruch-Gruszecki, and Lionel Parreaux

information uncovered while deconstructing the correspond-
ing GADT values. Consider Listing 1b as a concrete example,
which shows how to evaluate an expression of type Expr[T],
for any T. In this example, GADT reasoning makes the com-
piler derive the constraint T :> Int in the IntLit branch (i.e.,
T is a supertype of Int) allowing the case body to type check.

GADT constraints are inferred by Dotty based on the
cohabitation of types. Formally, types A and B are said to
“cohabit” if there exists a value x that can be given both types.
For example, in the IntLit case of Listing 1b, we know that e
is of type Expr[T] (based on its type signature) and of type
IntLit (based on the matching pattern), implying that Expr[T]
and IntLit cohabit. Scala’s type system always ensures that
all parent classes provide compatible type parameters to the
shared base classes. In our case, this means that since IntLit
inherits from Expr[Int], then we must have T :> Int for it to
be compatible with Expr[T] (Expr is covariant, so this does
not have to be T = Int). Hence, we can make this assumption
while type checking the IntLit case. More formally, Parreaux
et al. [2019] showed that the problem of GADT reasoning
could be understood and justified through the lens of Scala’s
core dependent object types (DOT) calculus. This core calculus
does not support type parameters, but a standard technique
is to represent type parameters as path-dependent types, for
which GADT reasoning can be explained.

Path-dependent types are an essential feature of Scala. A
stable path p is a path made of “stable” values, such as func-
tion parameters and immutable object fields (for instance
p = param.field,.field,). A path-dependent type is a type
of the form p.type or p.X — the former is a singleton type
representing the type of the specific value of p, and the latter
represents the specific type X that “lives” in p, where X is
declared as a possibly abstract type member in one of the
parent types of p. Since they depend on the runtime value
of variables, path-dependent types can be viewed as a form
of dependent types. Boruch-Gruszecki’s original implementa-
tion of GADT reasoning for Scala 3 was limited to dealing
with type parameters, leaving general path-dependent types
out of the picture. This was unfortunate for two reasons:
first, because path-dependent types provide a very general
and powerful way of abstracting over types in Scala, and
leaving them out makes Scala’s support for GADTs patently
incomplete; second, because as explained above our current
understanding of GADT reasoning in Scala is based on the
theory of path-dependent types, so not handling them in
Scala 3 seems like a major missed opportunity.

It is possible to infer GADT-style constraints for type mem-
bers and singleton types based on the typing information
that arises from pattern matching, but since this functionality
is currently missing from the compiler, many dependently-
typed programming patterns that are provably sound cannot
be type-checked as is. Listing 2 gives such an example, In
this example, we refine the type of the Expr data type to
also include the size information which is the number of



Implementing Path-Dependent GADT Reasoning for Scala 3

trait Expr[+X] { type Size <: Int }
case class IntLit(x: Int) extends Expr[Int] { type Size =1 }
case class Add[N1 <: Int, N2 <: Int](
el: Expr[Int] sized N1,
e2: Expr[Int] sized N2
) extends Expr[Int] { type Size = N1 + N2 + 1 }

(a) Definition of a sized variant of Expr.
def swap[X](tree: Expr[X]): Expr[X] sized tree.Size =
tree match

case IntLit(x) => IntLit(x)
case Add(1l, r) => Add(swap(r), swap(l))

(b) Definition of the swap function on sized Exprs.

type sized[X, N <: Int] = X & { type Size = N }
(c) Definition of the sized infix operator.

Listing 2. A piece of Scala code using both type parameter
and type members GADT reasoning. It is sound but cannot
type check in the current version of Dotty. Note that the
example uses the compile time integer operation type ‘+°
introduced by Scala 3 in package scala.compiletime.ops.int.

nodes in the expression tree, encoded through a Size type
member.” For the IntLit case in Sublisting 2b, the compiler
infers that X = Int via type parameter GADT reasoning,
and should additionally know that tree.Size = 1 via type
member reasoning, allowing IntLit(x) to be recognized as a
value of type Expr[X] sized tree.Size. Without the support of
type member GADT reasoning, one is currently required to
painstakingly add many path-dependent type annotations
to the program, which results in needless boilerplate and ob-
scures the meaning of the program. On the theory side, Scala
type parameters themselves are modeled in DOT through
type members, and DOT allows GADT reasoning based on
information implied by constraints over type members [Par-
reaux et al. 2019; Wasko 2020]. Thus, supporting GADT rea-
soning for type members will bring the compiler closer to
its formal foundations.

3 Current Implementation of GADTs

In this section, we introduce the implementation of GADT
constraint inference in the current compiler by answering
two design questions: (1) how GADT constraints are stored in
the compiler and (2) how GADT constraints are inferred. The
two questions account for data structures and program logic
of the implementation respectively. Note that the current
GADT implementation only supports type parameters, and
not path-dependent types. We present our implementation
of path-dependent GADT reasoning in Section 4.

2This encoding is convenient as it does not “pollute” Expr with additional
type parameters. Users who care about the sizes of manipulated expressions
may use ‘sized’ refinements, as in ‘Expr[A] sized N’, which is a shorthand
for the type refinement Expr[A] & {type Sized = N}, and users who are
not interested in size information may simply use Expr[A], whereby the
expression’s size is existentially quantified.

SCALA ’21, October 17, 2021, Chicago, IL, USA

internal

external

type parameter

symbol

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Figure 2. The mappings between constrained type parame-
ters and their internal representations in GadtConstraint.

3.1 Storing Constraints for Type Parameters

In Dotty, GADT constraints are stored in the class Gadt-
Constraint. Specifically, the class contains (1) the mapping
between type parameters and internal representations, and
(2) derived GADT constraints over the internal representa-
tions in an OrderingConstraint.

The basic idea of GadtConstraint is to map the type param-
eters to the internal representations OrderingConstraint op-
erates on, and rely on OrderingConstraint to store and man-
age the constraints. OrderingConstraint is an immutable data
structure that can record and manage constraints for type
parameters, but it is designed for type inference and cannot
be directly used for GADT constraints. Therefore, we imple-
ment GadtConstraint to adapt the functionalities provided
by OrderingConstraint. GadtConstraint also utilizes the
additional functionalities provided by ConstraintHandling,
which keeps an instance of OrderingConstraint in a mutable
field. For brevity, we will not present ConstraintHandling —
it merely defines "surface" methods which require mutating
the current constraint. In the following part, we first describe
the structure of mappings used in GadtConstraint, which
serve as bridges between the GADT-constrained external
type parameters and the internal representations for con-
straint handling. Then, we explain the logic for the addition
and retrieval of GADT bounds utilizing stored mappings.

3.1.1 Mappings. The internal representations of the ex-
ternal constrained type parameters are the internal type pa-
rameters in the OrderingConstraint and its associated type
variables. Type variables are a data structure for constraint
inference, and they can be viewed as mutable trackers of
type parameters in the OrderingConstraint. The GadtCon-
straint class will store the two-way mappings between the
external type parameters and their internal representations.
As illustrated in Figure 2, there will be two data members
in the GadtConstraint to store the mappings: mapping and



SCALA ’21, October 17, 2021, Chicago, IL, USA

sealed abstract class GadtConstraint:
def addBound(sym: Symbol, bound: Type, isUpper: Boolean)(using
Context): Boolean

def bounds(sym: Symbol)(using Context): TypeBounds

def isLess(syml: Symbol, sym2: Symbol)(using Context): Boolean

def addToConstraint(syms: List[Symbol])(using Context):
Boolean

Listing 3. GadtConstraint interfaces for adding and retriev-
ing constraints, and registering type parameters.

reverseMapping. The signature for mapping is Simplelden-
tityMap[Symbol, TypeVar]® that maps the symbol of the
constrained type parameter to the internal type variable; re-
verseMapping is of type SimpleldentityMap[TypeParamRef,
Symbol] that maps the reference to an internal type parame-
ters back to the external symbols.

3.1.2 Adding and Retrieving GADT Bounds. As listed
in Listing 3, GadtConstraint provides interfaces for adding
and retrieving GADT bounds. For adding bounds, the ad-
dBound function will first try to transform the type parame-
ter referenced by the symbol or in the bounds to their internal
representations, and then call the constraint handling logic.
For retrieving bounds, bounds will return all GADT-inferred
bounds for the type parameter, but the constraints of the
ordering between other GADT-constrained type parameters
will not be included, since including this information will
require subtype checking, and may thus result in infinite
loops interacting with TypeComparer. In cases where this in-
formation is necessary, isLess is used to retrieve the ordering
constraints between two constrained type parameters. Both
functions will first try to transform the external symbols
into the internal representations, and then query bounds for
them.

A key implementation concern here is that we must ensure
to transform all constrained type parameters into their inter-
nal representations when adding and querying constraints
for them, and transform the internal type variables back to
the external types to prevent the leaking of internal repre-
sentations.

3.1.3 Type Parameter Registration. Before we can ac-
tually record and retrieve constraints for type parameters,
we explicitly tell the GadtConstraint which type parameters
are constrainable by registering them. The addToConstraint
method can register type parameters into the constrainer.
Specifically, the method will create internal representations
for the type parameters to be registered, and update the map-
pings to record the relationship between external types and
internal variables. Additionally, it will also properly handle
the inter-dependency between registered type parameters.

3SimpleldentityMap is a linear map based on instance identity (using the
eq method in Scala).

Yichen Xu, Aleksander Boruch-Gruszecki, and Lionel Parreaux

trait Container[+T]
case class IntList() extends Container[List[Int]]

def foo[T](e: Container[List[T]]): T = e match
case IntList() => 0
Listing 4. Scala code illustrating GADT constraint inference.

To see a concrete example, consider we are registering a
type parameter A with bounds A <: T, where T is a type
parameter that is being registered together with A, or already
being in the GADT constraint handler. Then the T should
be substituted to its internal representation when we are
storing bounds for A internally.

The type parameter registration is triggered in Typer.
When we are typing a method or class definition with a
type parameter list, we will register the type parameter in-
troduced by them.

3.2 Inferring GADT Constraints

With the utilities for storing and handling GADT constraints
for type parameters, we are now concerned with the way to
actually inference the constraints. In Dotty, the class named
PatternTypeConstrainer implements the GADT constraints
inference, relying on the subtyping comparison logic im-
plemented in TypeComparer. The inference logic is called
when we are typing the pattern match, with the scrutinee
and pattern types supplied in the arguments. The inference
is done in two main steps: (1) firstly, since the GADT rea-
soning is actually based on the cohabitation of the scrutinee
and pattern type, we will find out the subtyping relations
necessary for the cohabitation condition to hold; (2) then,
we call TypeComparer on these subtyping relations to get
the constraints.

Listing 4 gives a concrete example for GADT constraint
inference. Firstly, to satisfy the cohabitation condition be-
tween Container[List[T]] and IntList, the relation List[Int] <:
List[T] must hold, since IntList is a case class [Odersky et al.
2016] that is impossible to extend and the type parameter is
covariant [Castagna 1995]. Then we call TypeComparer on
this subtyping relation, and will end up with the constraint
T :> Int being inferred and recorded.

4 Implementing Path-Dependent GADT

In this section, we present our path-dependent GADT rea-
soning implementation. We will start with an overview of
path-dependent GADT’s use cases, followed by an explana-
tion of how we enable the recording and handling of GADT
constraints for type members. Then, we present a primitive
implementation for recording equalities between singleton
types based on pattern match. Finally, we discuss the rela-
tion with theory, the soundness of the implementation and
prospect future work.



Implementing Path-Dependent GADT Reasoning for Scala 3

trait Tag { type T >: Int }
def f(e: { type T }): e.T = e match
case el: Tag => 0

(a) Deriving bound between type members.
trait Tag { type T }

def f(p: Tag, m: Expr[p.T1): p.T = m match
case IntLit(i) => i

(b) Constraining path-dependent types.
trait IntTag { type T >: IntExpr }

def fIXI(e: { type T <: Expr[X] }): X = e match
case el: IntTag => @

(c) Type members as subtyping proofs.

Listing 5. Scala code illustrating the use cases of path-
dependent GADT reasoning.

4.1 Use Cases

GADT constraints of path-dependent types are useful in
many real-world scenarios, and the lack of them will prevent
a certain number of sound Scala codes from compiling. Here
we list a series of key use cases of path-dependent GADT
reasoning.

Case 1. Deriving bounds between type members. Based
on the pattern match, GADT constraints can be inferred for
type members from the cohabitation of the scrutinee and
pattern type. Consider the example given in Listing 5a. Since
in the case body, we actually have e <: Tag & {T'}, which
implies e <: {T :> Int}, we can derive the GADT bound
e.T :> Int for the path-dependent type e.T.

Case 2. Constraining path-dependent types. The path-
dependent types addressed from extensible classes can be
treated as constrainable. In other words, we can inference
GADT constraints for them just like what we do for type
parameters. Listing 5b gives such an example. The path-
dependent type p.T is constrainable, and we can derive the
GADT constraint p.T :> Int for it.

Case 3. Type members as subtyping proofs. Addition-
ally, the type members of an inhabited type can serve as
subtyping proofs [Amin et al. 2016, 2014]. Therefore, we
can derive more GADT constraints based on the subtyping
relation. Inside the case body of Listing 5c, we know that
the structural type IntTag & {T <: Expr[X]}, which can be
simplified as {T :> IntExpr <: Expr[X]}, is inhabited. There-
fore, the type member T in the structural type can serve
as proof for IntExpr <: Expr[X], leading to the GADT con-
straint X :> Int.

A real-world example. To better see the real-world bene-
fits brought by path-dependent GADT reasoning, we provide
an example in Listing 6. It implements a sized homogeneous
vector Vec, and defines a constructor that turns its arguments
of arbitrary number into a Vec instance. Listing 6d shows its
usage: vecT is constructed naively while vec2 is defined using
the constructor. To implement such a constructor, we utilize
the Tuple class and defines a type class TupOf to encode the

SCALA ’21, October 17, 2021, Chicago, IL, USA

abstract class TupOf[T, +AJ:
type Size <: Int

(a) Definition of the TupOf type class.

object TupOf:
given Empty: TupOf[EmptyTuple, Nothing] with
type Size = @
final given Cons[A, T <: Tuple, N <: Int]
(using p: T TupOf A sized N): TupOf[A *: T, Al with
val p@: T TupOf A sized N = p
type Size = S[N]

(b) Implicit derivation for the TupOf type class.

enum Vec[N <: Int, +A]:
case VecNil extends Vec[@, Nothing]
case VecCons[N@ <: Int, Al(head: A, tail: Vec[No, Al)
extends Vec[S[NQ], Al

object Vec:
def apply[A, T <: Tuple]
(xs: T)(using p: T TupOf A): Vec[p.Size, A] = p match
case _: TupOf.Empty.type => VecNil
case pl: TupOf.Cons[a, t, n] =>
VecCons(xs.head, apply(xs.tail)(using p1.p@))

(c) Definition of the Vec class.

val vecl
val vec2

VecCons(1, VecCons(2, VecCons(3, VecNil)))
Vec(1, 2, 3)

(d) Usage example of the Vec class.

Listing 6. A real-world code example involving type classes
and dependent programming. It relies on path-dependent
GADT reasoning to pass type checking. The definition in
Listing 6¢ uses the enum? syntax, and the example operates
on the Tuple5 class, both introduced in Scala 3.

shape and element type of a homogeneous (i.e., uniformly-
typed) tuple. An instance p of type TupOf[T, A] serves as
proof that the tuple type T has a size of p.Size and all its
elements have type A. Thanks to Scala’s implicits system
[Odersky et al. 2016] (whose syntax was recast in terms of the
‘given’ and ‘using’ keywords in Scala 3), we can automatically
derive type class instances for tuples. Then, Vec’s apply con-
structor pattern matches on the automatically derived TupOf
instance to extract information about the tuple’s shape and
element type, and utilize this information to convert the tu-
ple into a Vec. For instance, Vec(0, 1, 2), which is syntax sugar
for Vec(0 #: 1 #: 2 : EmptyTuple), results in a vector typed as
Vec[Int, 3]. GADT constraints of path-dependent types are
crucial for the compilation of the example. Specifially, in the
TupleOf.Empty case, we can derive the GADT constraint that
p.Size = TupOf.Empty.Size = 0. This allows us to supply a
VecNil : Vec[0, Nothing] for return type Vec[p.Size, A]. This
example illustrates how path-dependent GADT reasoning
can benefit type reasoning in real world scenarios, showing
that our work improves the experience of dependently-typed
programming in Scala.

4https://dotty.epfl.ch/docs/reference/enums/enums.html
Shttps://www.scala-lang.org/2021/02/26/tuples-bring-generic-
programming-to-scala-3.html


https://dotty.epfl.ch/docs/reference/enums/enums.html
https://www.scala-lang.org/2021/02/26/tuples-bring-generic-programming-to-scala-3.html
https://www.scala-lang.org/2021/02/26/tuples-bring-generic-programming-to-scala-3.html

SCALA ’21, October 17, 2021, Chicago, IL, USA

external internal

A
I
i mapping
I
I

reverse mapping
type parameter

type variable
mapping

reverse mapping |

type parameter

mapping

I
|
type variable |
I
I
I
I

reverse mapping
i

Figure 3. The mappings between constrained path-
dependent types and their internal representations in Gadt-
Constraint.

4.2 Extending GADT to Path-Dependent Types

4.2.1 Storing and Managing GADT Constraints. We
implement the storage of path-dependent GADT constraints
based on the original GadtConstraint, which only supports
type parameters previously. Recap that in the original Gadt-
Constraint, we maintain mappings between the symbols of
type parameters and their internal representations. When it
comes to path-dependent types, only recording the symbol of
the type member will not be enough, since a path-dependent
type is consitituted by not only its type member symbol, but
also the prefix. Therefore, we will map the prefix together
with the path-dependent type’s type member symbol to the
internal data structures.

Specifically, the path-dependent types are represented as
a TypeRef(prefix: Type, designator: Designator). We use a
mapping of type SimpleldentityMap[SingletonType, Simplel-
dentityMap[Symbol, TypeVar]] to map the path dependent
types to their type variables. Here we use the Singleton-
Type to represent the prefix, since in order to form a valid
path-dependent type, the prefix must be a singleton. On the
reverse side, we use a mapping of SimpleldentityMap[ Type-
ParamRef, TypeRef] to map the internal type parameters
references back to external path-dependent types.

With the these mappings, we can implement the meth-
ods for constraint recording and retrieval similarly for path-
dependent types.

Yichen Xu, Aleksander Boruch-Gruszecki, and Lionel Parreaux

4.2.2 Constraint Inference. Path-dependent GADT rea-
soning can be classified into two main cases. Firstly, we
would like to inference GADT constraints based on the type
members of the scrutinee and the pattern, as in Listing 5a
and 5c. Since the pattern and scrutinee will inhabit the same
intersection type in the case body, we assume that the shared
type members of the pattern and scrutinee are the same type
as each other and then derive constraints based on the sub-
typing relations. Specifically, in Listing 5a, for e : {T} and
e; : {T <: Int}, we extract constraints from the subtyping
relations e.T <: e;.T and e;.T <: e.T, getting e.T <: Intas a
GADT bound.

Secondly, we would like to constrain path-dependent types
where they can be GADT constrained while no pattern
matching is performed on the path, as in Listing 5b. This can
be achieved with existing GADT reasoning logic for type pa-
rameters, as long as the path-dependent types have internal
representations created and are recognized by the GadtCon-
straint as constrainable, We achieve this by implementing
the just-in-time type registration scheme in GadtConstraint,
which will be explained in detail in the following section.

4.3 Registering Path-Dependent Types

Unlike type parameters, whose registration can be done
when its introducing definition is being typed, the regis-
tration of path-dependent types can happen in more cases
and can involve subtle issues. To handle path-dependent
type registration, we implement two schemes: (1) registering
when pattern matching and (2) just-in-time registration.

Registering when pattern matching. When doing pat-
tern matching, we will scan the type member list of the
scrutinee and pattern, and create internal representations
for induced path-dependent types. For example, when con-
straining the pattern match in Listing 5a, we will register
e.T and e;.T. Then we trigger the constraint inference logic
based on the subtyping relations between path-dependent
types we have just registered.

Just-in-time registration. While p.T in Listing 5b will
not be internalized by the previous scheme (since no pat-
tern matching is performed on its path p), it is possible to
record GADT constraints for them. We propose the just-in-
time (JIT) scheme to register path-dependent types in such
cases. To help understanding the JIT scheme better, we first
describe the way to infer GADT bounds in TypeComparer.
Internally, the comparer will examine deeply into the sub-
typing relation to verify it and record GADT bounds when
possible. Before recording GADT bounds, it will first check
whether GADT inferencing is enabled and the constrained
type is registered in handler. Before our work, when Gadt-
Constraint is asked whether an unseen path-dependent type
is constrainable, it will return false to prevent the bounds
from being recorded. With the JIT scheme enabled, we will
check whether the path-dependent type can be constrained,
create internal representations for it just-in-time, and return



Implementing Path-Dependent GADT Reasoning for Scala 3

trait Tag { type T }
trait T1
trait T2 extends T1
def f(p: Tag, e: { type T = p.T }): p.T = e match
case _: ({ type T<: T1 } | { type T <: T2 }) => new T2 {3}

Listing 7. Scala code snippet illustrating the issue of union
types.

trait Tag { type S >: Int; type T =S }
def f(e: { type T }): e.T = e match
case _: Tag => 0@

Listing 8. Scala code snippet illustrating the issue of un-
bound patterns.

a match
case b: X1 =>
a match
case c: X2 =>
x match
case y: X3 =>

// Infer that a.type == b.type == c.type
//  and x.type == y.type
val t@: b.type = ¢

Listing 9. Inferring GADT constraints on singleton types.

true if possible. For example, in Listing 5b, when the com-
parer asks whether p.T is registered, GadtConstraint will
create type variables for p.T and allow the GADT bounds to
be recorded for it. While the scheme allows the recording of
path-dependent GADT constraints in more cases, it brings a
subtle issue when pattern-matching on union types.

Issue of the JIT scheme with union types. Listing 7
illustrates the issue of pattern-matching on union types, in
which the scrutinee e : T is matched against a union type
{T <: T} | {T <: T, }. To extract GADT constraints from the
pattern matching, the compiler will branch into two com-
ponents in the union type, derive GADT bounds in each of
the directions, and comparer the constraints in each way to
find the more general one. However, with the JIT scheme
enabled, the type p.T will be registered after branching into
each direction, producing two different internal representa-
tions for the same p.T type in the two derived constraints.
The current compiler implementation cannot properly han-
dle the case where two different internal type variables track
the same external type, thus preventing Listing 7 from com-
piling. Therefore, we rewrite the constraint comparison logic
to properly handle the case brought by the JIT scheme, by
discovering these sibling type variables referring to the same
type through inspecting the mappings.

Unbound patterns. Apart from the previous issue orig-
inating from the JIT scheme, we encountered another is-
sue involving unbound patterns. when we implement our
approach. Considering a concrete example, in the pattern
matching of Listing 8, we will end up unifying e.T to the
type member S in the pattern. Ideally, when comparing Int to
e.T in the body, we will first retrieve the GADT bound that

SCALA ’21, October 17, 2021, Chicago, IL, USA

Figure 4. Visualization of the disjoint set data structure for
recording singleton equalities in Listing 9.

e.T is equal to the pattern’s type member S in the pattern,
and then find out that S is a supertype of Int. However, the
pattern is unbound. So it is impossible to refer to its type
member S. The naive implementation will leak the internal
representation of S, which will confuse the comparer, and
prevent the code from compiling. We take the solution to
creating a skolem serving as a placeholder of the unbound
pattern, and map all pattern’s type members onto it. This
enables us to reference type members of a unbound pattern.

4.4 Recording Equality between Singletons

Apart from deriving constraints for the type members of
the scrutinee and pattern, it is also safe to assume that the
scrutinee and the pattern are referring to the same value in
the case body, implying that their singleton types are equal.
Listing 9 gives an example of GADT constraint inference
over singleton types. In this snippet, a is matched against b,
then c, implying that the singleton types from a, b and c are
all equal. In other words, the three symbols refer to the same
value in the case body. Similar reasoning applies for x and y.

We utilize the disjoint set data structure to record the
equalities in a simple yet effective manner. The constraints
between singleton types are all equalities, resulting a series
of equivalent classes of singletons, which can be efficiently
stored and queried using the disjoint union data structure.
Figure 4 visualizes the state of the disjoint set within the
innermost match case. This allows the type comparer to
recognize that ¢ <: b.type.

5 Experimental Evaluation

In this section, we empirically evaluate our implementation
in two aspects: conservativeness and performance.

To verify that our implementation is conservative, in the
sense that it neither breaks existing compiling Scala code
nor unexpectedly makes unsound code compile, we run all
compilation unit tests on the modified compiler. The test
suite includes both positive and negative tests and covers a
broad range of functionalities and use cases of the compiler.
Our branch is able to pass all of the 8345 unit tests, suggesting
that our implementation is conservative.

®https://github.com/lampepfl/bench


https://github.com/lampepfl/bench

SCALA ’21, October 17, 2021, Chicago, IL, USA

Yichen Xu, Aleksander Boruch-Gruszecki, and Lionel Parreaux

Running Time (relative)

0.9

dotty stdlib scalap re2 quote-1

quote-1k quote-string 11687 empty-class empty-object

Figure 5. Performance impact of our implementation. It shows the relative running time of 10 tests in the Dotty benchmark®

on our branch compared to the master.

To investigate the performance impact of our modification,
we run the test suites in the Dotty benchmark and inspect the
changes in the running times. We repeat the benchmarking
for 10 times and average the results. We report the relative
running time and its standard deviation before and after our
modification in Figure 5. From the figure, we observe that
our modification seems to slightly slow down the compiler
in certain cases. It brings a rise of running time by 5% in the
re test, while in most tests the increase is about 1% ~ 2%.
The drop of performance can be attributed to the additional
GADT reasoning logic we implemented for type members
and singleton types. The added logic will be triggered each
time the compiler is typing a pattern match case, which can
contribute negatively to the overall performance. However,
it should be noted that we have not yet expended any efforts
into optimizing our implementation, since we have been
focusing on correctness first. So there is still much room for
performance improvements to be explored, possibly making
the overhead of path-dependent GADT reasoning close to
negligible in the future.

6 Discussion

In previous sections, we lay out the framework of GADT rea-
soning framework in Dotty, and present our extension to the
framework to enable GADT reasoning for path-dependent
types and singleton types. Apart from the additional func-
tionality it brings to the compiler that will benefit real-world
use cases, our work also brings Dotty closer to the depen-
dent object type system, the theoretical foundations of the
compiler. In this section, we wrap up our presentation by
informally discussing the soundness of our approach to path-
dependent GADT constraint inference, and noting the future
work in this direction.

6.1 Relation with Theory

Apart from benefiting real-world usages, our implementation
also brings the Dotty compiler closer to its formal founda-
tions.

The essence of GADT reasoning in Scala is to derive con-
straints from cohabitation. On the formal side, DOT [Amin

et al. 2016] already takes into account type information fol-
lowing from cohabitation - that is, from values of types of
the form T & U which are in scope. More specifically, DOT
can leverage information present in the bounds of any values
bound in the current typing context. This reasoning crucially
uses the DOT type member typing rules, which states that
path-dependent types are bounded by the bounds of the cor-
responding type member, and on subtyping transitivity rule.
For instance, given a value x of type x : {A :> S <: T} in
scope, then the relationships S <: x.A and x.A <: T hold,
and by transitivity so does S <: T.

Ideally, on the practical side, the compiler should also
make use of this information found in the bounds of the
variables in scope. However, in the general case, because
DOT supports complex recursive type specifications (just
like Scala), these rules make type checking in DOT undecid-
able, and an algorithmic version of DOT thus has to somehow
restrict them [Hu and Lhotak 2019; Nieto 2017]. The current
approach taken by the Scala 3 compiler until now was to
simply completely disregard any information that could be
obtained from the bounds of the variables in scope (making
the subtyping relationship of Scala 3 not transitive). In or-
der to leverage such bounds information, users would have
to use explicit type annotations, essentially proving tran-
sitivity to the compiler every time — for instance, given x:
{A :> S <: T} in scope, if one wanted to upcast a value
e of type F[S] to type F[T], assuming some covariant type
constructor F, one would have to write ‘e: F[x.A]’.

What we propose and implement in this paper is a com-
promise, a sweet spot between full leverage of bounds infor-
mation (DOT, undecidable) and no leverage of bounds infor-
mation at all (current Scala 3, too restrictive). Indeed, most
cases that are actually useful in the context of GADT-style
programming are simple and do not involve recursive types,
so we can leverage their bounds without getting into decid-
ability problems. We also choose to only consider bounds
information arising specifically from values that are being
pattern-matched because this is typically where new typing
information comes into play in user programs. Trying to
leverage all information present in all variables in scope at



Implementing Path-Dependent GADT Reasoning for Scala 3

(e1: { type T :> A1 <: B1 }) match
case e2: { type T :> A2 <: B2} =>// ...

Listing 10. A code example for discussing soundness of
path-dependent GADT constraint inference.

any time would probably impose too much of a performance
penalty on the compiler, for relatively little gain. We reserve
investigating this possible extension as future work.

In a nutshell, our work helps the compiler infer and make
use of additional subtyping relationships that demonstrably
hold in the formal system, thus bringing the implementation
closer to the theory.

6.2 Informal Discussion of Soundness

We informally discuss the soundness of the approach adopted
in our path-dependent GADT implementation. The derived
constraints are sound if they necessarily follow from the
cohabitation condition. Listing 10 presents an example for
reasoning pattern matching involving type members. Note
that the example can be generalised to cases with multiple
type members easily, while we stick to the single type mem-
ber case for the ease of presentation. In our algorithm, when
reasoning about the case, we will extract GADT bounds
from the subtyping relations e;.T <: e,.T and e;.T <: e;.T.
More specifically, this will end up performing the following
operations:

1. Add orderings between type members: e;.T <: e2.T
and e,.T <:e;.T.

2. Further constrain type members with propagted bounds:

e1.T <: By, e1.T :> Ay, e, T <: By and e,. T :> A;.
3. Derive GADT constraints based on the subtyping rela-
tions: A; <: B, and A, <: B;.

Then, we informally verify that all operations will produce
constraints necessary from the cohabitation e, : {T :> A, <:
By} &ey .type. Firstly, e, being of type e;.type implies that
e; and e, are two symbols denoting the same runtime in-
stance. Therefore, e;.T and e,.T will refer to the same path-
dependent type, and the constraints from the first and the
second operation are all necessary from the cohabitation.

Next, we show the necessity of constraints derived by
the third operation. In the body of the pattern matching,
there exists a variable e = e; = e; of type {T > A; <:
Bi} & {T :> Ay <: By} = {T :> A | Ay <: B & B;}. As
stated before, the existence of an instance of a type can serve
as subtyping proof between the lower and upper bounds of
its type members. Therefore, from the existence of variable
e , we know that A; | A, <: By & By, which implies A; <: By
and A; <: By. We leave the formal soundness proof as future
work.

"https://github.com/lampepfl/dotty/issues/13074

SCALA ’21, October 17, 2021, Chicago, IL, USA

class Module[*[_, _]1]:
sealed trait Box[A]

case class Box2x2[A, B, C, D](value: (A x B) * (C x D))
extends Box[(A * B) x (C % D)]

def unbox2[X, YJ(box: Box[X * Y]): (X *Y) =
box match
case Box2x2(v) => v

Listing 11. A code snippet showing the necessity of storing
GADT constraints for concrete types. It is taken from issue
#13074” in the Dotty repository.

6.3 Future Work

Here, we further note the future work that can be done in
this direction.

Unified GADT reasoning. Currently, GADT reasoning
for type parameters and type members have their separate
data structure and logic. However, type parameter GADT can
be modeled with type members [Parreaux et al. 2019; Wasko
2020], suggesting the possibility of unifying the handling
logic for them. This will not only simplify the codebase, but
also improve the consistency between the compiler and the
theory.

Recording GADT constraint for concrete types. Some-
times we fail to derive GADT constraints due to lack of con-
structor injectivity. Listing 11 gives such an example, where
we can not assume the injectivity of the abstract constructor
* so we will not break the constraint A*B+*C+*D=Xx*Y
down to further derive bounds for the type parameters, and
thus reject the code. However, the code itself is sound since
it only relies on the constraint A+ B* C * D = X * Y. The
key idea of JIT registration scheme in our implementation,
where we internalize and record bounds for path-dependent
types when we found it possible, suggests the possibility of
recording and utilizing such constraints between concrete
types to facilitate type checking.

Constraint inference for a wider range of cohabita-
tion. As stated before, DOT can leverage constraints implied
from the bounds of all variables in the typing environment,
while the GADT reasoning in Dotty currently only exploit
bounds of the scrutinee in pattern matching. This suggests
the possibility of deriving GADT bounds whenever a new
instance of cohabitated types comes into scope. Although
the user can always pattern match on the instance to trig-
ger GADT reasoning manually, this allows the automatic
discovery of rich bounds information, that can benefit type
reasoning, reduce boilerplates and improve user experience.

7 Related Work

In this section, we briefly introduce the related work on back-
ground topics. We will start with the definition and informal


https://github.com/lampepfl/dotty/issues/13074

SCALA ’21, October 17, 2021, Chicago, IL, USA

discussion of general GADTs, followed by the implementa-
tion of GADTs in Scala, and finally introduce the work on
Scala’s type members.

Generalized Algebraic Data Types. Generalized Alge-
braic Data Types [Xi et al. 2003] is an extension to parame-
terized ADTs that enables the data constructors to special-
ize type parameters of the classes, and makes it possible to
discover constraints over type parameters when perform-
ing pattern matching. These constraints allow the compila-
tion of code snippets that will not compile before without
GADT reasoning. Additionally, GADTs enable existential
quantification. To see an example of this, if we have a Tu-
pleTag of type Tag t defined in Listing 12, we know that
there exists two types a and b, such that t = (a,b). As a
widely-adopted language feature, GADT finds its support in
most functional languages. OCaml introduces the concept
of upward and downward-closure along with a calculus for
variance signs to support the checking of GADT definitions
and the inference of GADT constraints in pattern matching.
However, the GADT constraints inferenced in OCaml are
restricted to equality constraints, which limits the full power
of GADT reasoning with subtyping [Scherer and Rémy 2013].
Haskell, on the other side, supports first-class phantom type
for GADT reasoning. In Haskell, algebraic data types can be
created with phantom types and equality constraints, and
the constraints can be extracted when doing pattern match-
ing to facilitate typechecking [Cheney and Hinze 2003; Jones
et al. 2006]. However, different from Scala, GADT support
in OCaml and Haskell are all limited to closed GADT, and
neither of them support GADT reasoning for types with a
open and complex hierarchy.

trait Tag[T]
case class TupleTag[A, BI() extends Tag[(A, B)]

Listing 12. Definition of Tag using GADT. Existential quan-
tification is involved in the TupleTag constructor.

Implementing GADTs in Scala. The task of implement-
ing GADT reasoning for Scala is complicated by Scala’s
support for advanced type system features, including sub-
typing, variance [Castagna 1995], and refinements [Cook
et al. 1989], which fundamentally differ from existing lan-
guages with support for GADTs. Boruch-Gruszecki [2017]
proposed a GADT-aware algorithm for verifying the exhaus-
tiveness of GADT pattern matching and later added support
for GADT reasoning to the Scala 3 compiler, which enabled
many usual GADT patterns to type check in Scala 3. Parreaux
et al. [2019] showed that looking at the problem through the
lens of Scala’s formal foundation, the Dependent Object Type
(DOT) calculus [Amin et al. 2016] (and its pDOT extension
[Rapoport and Lhotak 2019]), provided a way of deriving
sound GADT reasoning principles for Scala, which Wasko
[2020] later elaborated. The core of this idea is to use type
members to represent the existential types that arise from

Yichen Xu, Aleksander Boruch-Gruszecki, and Lionel Parreaux

GADTs and to use bounds on these type members and path-
dependent types to represent and leverage the additional
information attached to them. Listing 13 illustrates a pitfall
brought by the variance of class type parameters [Giarrusso
2013; Parreaux et al. 2019]. Counterintuitively, the inequality
A <: B does not hold in the body because the class type
parameters are defined to have variance and can be further
refined. For instance, it is possible to set A = Any and B =
Nothing and create new Identity[X] & Func[Nothing, Any]
to satisfy the match case. If we wrongly assume that A <: B
in this example, we will have Any <: Nothing and end up
with a soundness hole.

trait Func[-A, +B]
class Identity[X] extends Func[X, X]

def fool[A, BJ](func: Func[A, B]) = func match
case _: Identity[c] =>
val b: B = ?2? : A // error! We cannot assume A <: B here

Listing 13. Code illustrating a pitfall in Scala GADT reason-
ing due to type parameter variance.

Type members. As an essential language feature of Scala
type members have been studied and formalized by previous
work [Amin et al. 2014; Odersky et al. 2016]. Type members
are type fields in Scala objects. They can be abstract in the
base classes and be instantiated or refined in derived sub-
classes. Importantly, all type members of a class must be
instantiated when creating an instance of that class [Amin
et al. 2016]. Therefore, the type member of an class instance
can be viewed as subtyping proof between its lower and
upper bounds. Previous work studies the properties of path-
dependent types [Amin et al. 2014] and Rapoport and Lhotak
formalizes them in a formal system, pDOT. We may infer
GADT constraints for path-dependent types just like what
we do for type parameters. As a missing part of Dotty’s
GADT reasoning, path-dependent GADT constraint infer-
ence can produce richer constraints and bring the compiler
closer to its formalism.

8 Conclusion

As a missing piece of the puzzle, path-dependent and sin-
gleton GADT reasoning is not implemented in the current
Dotty compiler but will benefit many real world use cases
and shorten the gap between the compiler implementation
and the formal foundations. To this end, we propose to im-
plement GADT reasoning for path-dependent and singleton
types in Dotty. This paper hopes to present the GADT im-
plementation in Dotty, and get those who are interested in
the technical details of Dotty internals familiar with related
data structures and program logic, to facilitate future devel-
opment.



Implementing Path-Dependent GADT Reasoning for Scala 3

References

Nada Amin, Samuel Griitter, Martin Odersky, Tiark Rompf, and Sandro
Stucki. 2016. The Essence of Dependent Object Types. In A List of
Successes That Can Change the World.

Nada Amin, Tiark Rompf, and Martin Odersky. 2014. Foundations of Path-
Dependent Types. SIGPLAN Not. 49, 10 (Oct. 2014), 233-249. https:
//doi.org/10.1145/2714064.2660216

Aleksander Boruch-Gruszecki. 2017. Verifying the totality of pattern match-
ing in Scala. Master’s thesis. Wroctaw University of Science and Tech-
nology.

Giuseppe Castagna. 1995. Covariance and Contravariance: Conflict without
a Cause. ACM Trans. Program. Lang. Syst. 17, 3 (May 1995), 431-447.
https://doi.org/10.1145/203095.203096

J. Cheney and R. Hinze. 2003. First-Class Phantom Types.

William R. Cook, Walter Hill, and Peter S. Canning. 1989. Inheritance is Not
Subtyping. In Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (San Francisco, California, USA)
(POPL ’90). Association for Computing Machinery, New York, NY, USA,
125-135. https://doi.org/10.1145/96709.96721

Paolo G. Giarrusso. 2013. Open GADTs and Declaration-Site Variance: A
Problem Statement. In Proceedings of the 4th Workshop on Scala (Mont-
pellier, France) (SCALA ’13). Association for Computing Machinery,
New York, NY, USA, Article 5, 4 pages. https://doi.org/10.1145/2489837.
2489842

Jason Z. S. Hu and Ondiej Lhotak. 2019. Undecidability of D<: And Its
Decidable Fragments. Proc. ACM Program. Lang. 4, POPL, Article 9 (Dec.
2019), 30 pages. https://doi.org/10.1145/3371077

Simon L. Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Geoffrey
Washburn. 2006. Simple unification-based type inference for GADTs.
In Proceedings of the 11th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2006, Portland, Oregon, USA, September

SCALA ’21, October 17, 2021, Chicago, IL, USA

16-21, 2006, John H. Reppy and Julia L. Lawall (Eds.). ACM, 50-61. https:
//doi.org/10.1145/1159803.1159811

Abel Nieto. 2017. Towards Algorithmic Typing for DOT (Short Paper).
In Proceedings of the 8th ACM SIGPLAN International Symposium on
Scala (Vancouver, BC, Canada) (SCALA 2017). Association for Computing
Machinery, New York, NY, USA, 2-7. https://doi.org/10.1145/3136000.
3136003

Martin Odersky, Lex Spoon, and Bill Venners. 2016. Programming in Scala:
Updated for Scala 2.12 (3rd ed.). Artima Incorporation, Sunnyvale, CA,
USA.

Lionel Parreaux, Aleksander Boruch-Gruszecki, and Paolo G. Giarrusso.
2019. Towards Improved GADT Reasoning in Scala. In Proceedings of
the Tenth ACM SIGPLAN Symposium on Scala (London, United Kingdom)
(Scala ’19). Association for Computing Machinery, New York, NY, USA,
12-16. https://doi.org/10.1145/3337932.3338813

Marianna Rapoport and Ondfej Lhotak. 2019. A Path to DOT: Formalizing
Fully Path-Dependent Types. Proc. ACM Program. Lang. 3, OOPSLA,
Article 145 (Oct. 2019), 29 pages. https://doi.org/10.1145/3360571

Gabriel Scherer and Didier Rémy. 2013. GADTs Meet Subtyping. In Pro-
gramming Languages and Systems - 22nd European Symposium on Pro-
gramming, ESOP 2013, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013, Rome, Italy, March
16-24, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7792),
Matthias Felleisen and Philippa Gardner (Eds.). Springer, 554-573. https:
//doi.org/10.1007/978-3-642-37036-6_30

Radostaw Wasko. 2020. Formal foundations for GADTs in Scala.

Hongwei Xi, Chiyan Chen, and Gang Chen. 2003. Guarded Recursive
Datatype Constructors. In Proceedings of the 30th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (New Orleans,
Louisiana, USA) (POPL ’03). Association for Computing Machinery, New
York, NY, USA, 224-235. https://doi.org/10.1145/604131.604150


https://doi.org/10.1145/2714064.2660216
https://doi.org/10.1145/2714064.2660216
https://doi.org/10.1145/203095.203096
https://doi.org/10.1145/96709.96721
https://doi.org/10.1145/2489837.2489842
https://doi.org/10.1145/2489837.2489842
https://doi.org/10.1145/3371077
https://doi.org/10.1145/1159803.1159811
https://doi.org/10.1145/1159803.1159811
https://doi.org/10.1145/3136000.3136003
https://doi.org/10.1145/3136000.3136003
https://doi.org/10.1145/3337932.3338813
https://doi.org/10.1145/3360571
https://doi.org/10.1007/978-3-642-37036-6_30
https://doi.org/10.1007/978-3-642-37036-6_30
https://doi.org/10.1145/604131.604150

	Abstract
	1 Introduction
	2 Background
	3 Current Implementation of GADTs
	3.1 Storing Constraints for Type Parameters
	3.2 Inferring GADT Constraints

	4 Implementing Path-Dependent GADT
	4.1 Use Cases
	4.2 Extending GADT to Path-Dependent Types
	4.3 Registering Path-Dependent Types
	4.4 Recording Equality between Singletons

	5 Experimental Evaluation
	6 Discussion
	6.1 Relation with Theory
	6.2 Informal Discussion of Soundness
	6.3 Future Work

	7 Related Work
	8 Conclusion
	References

